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Many problems in computer graphics and computer vision applications

involves inferring a rotation from a variety of different forms of inputs. With

the increasing use of deep learning, neural networks have been employed

to solve such problems. However, the traditional representations for 3D

rotations, the quaternions and Euler angles, are found to be problematic

for neural networks in practice, producing seemingly unavoidable large

estimation errors. Previous researches has identified the discontinuity of

the mapping from SO(3) to the quaternions or Euler angles as the source of

such errors, and to solve it, embeddings of SO(3) have been proposed as the

output representation of rotation estimation networks instead. In this paper,

we argue that the argument against quaternions and Euler angles from local

discontinuities of the mappings from SO(3) is flawed, and instead provide a

different argument from the global topological properties of SO(3) that also
establishes the lower bound of maximum error when using quaternions and

Euler angles for rotation estimation networks. Extending from this view,

we discover that rotation symmetries in the input object causes additional

topological problems that even using embeddings of SO(3) as the output
representation would not correctly handle. We propose the self-selecting

ensemble, a topologically motivated approach, where the network makes

multiple predictions and assigns weights to them. We show theoretically and

with experiments that our methods can be combined with a wide range of dif-

ferent rotation representations and can handle all kinds of finite symmetries

in 3D rotation estimation problems.
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1 INTRODUCTION
The modeling of objects is one of the central problems in computer

graphics and computer vision, and in many applications, part of this

involves inferring a rotation. And in recent years, neural networks

have increasingly been employed for solving such problems. The

range of applications include object rotation estimation [Mahendran

et al. 2017; Su et al. 2015; Xiang et al. 2018], camera parameter

estimation [Poursaeed et al. 2018], registration of 3D scans [Pais

et al. 2020] and estimation of human pose [Zhou et al. 2016], to

name a few. However, difficulties has been encountered, in that the
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network seems unable to avoid large rotation estimation errors in

excess of 100
◦
in certain cases, as observed in [Xiang et al. 2018],

for example.

There have been attempts to explain this error and find solutions.

[Zhou et al. 2019] is among the first works to attempt a theoretical

analysis of this problem. The authors noticed that the functions

computed by neural networks are continuous, while the correct

functions mapping a rotation to its quaternion or Euler angle repre-

sentation are not continuous. From this, they defined a notion of

continuity of rotation representations, and proposed a 6D and a 5D

embedding of SO(3) which is shown to be continuous, thus making

it suitable for use in neural networks.

This has inspired interest in the study of rotation representa-

tions, and further proposals for rotation representation with nice

mathematical properties have been proposed. For example, in [Levin-

son et al. 2020] the long known optimal matrix orthogonalization

method using Singular Value Decomposition (SVD) has been shown

to be a favourable rotation representation in neural networks, and in

[Peretroukhin et al. 2020] the authors proposed using the output of

the network to parametrize a Quadratically-Constrained Quadratic

Program (QCQP), the solution of which is a rotation, thus providing

a rotation representation in neural networks.

While we appreciate the past research, we feel that the theory

was not built on solid ground. In particular, the proof of the non-

viability of quaternion and Euler angle representations is by first

identifying a specific mapping from a rotation to one of the correct

representations, then locating a discontinuity of this mapping, thus

showing that a continuous neural network cannot learn such a

mapping. We feel that requiring the neural network to fit a pre-

designated mapping from a rotation to one of its representations

does not represent the best neural network training strategy. Yet

this strategy is widely used. For example, in [Peretroukhin et al.

2020] the authors stated that 180
◦
input rotations are especially

problematic. In our view, there is nothing inherently problematic

about 180
◦
rotations. The large errors appear to be caused by 180

◦

rotations only because the most commonly used pre-designated

representation mapping has discontinuities at these points.

In addition, previous theories explained why continuous neural

networks cannot compute quaternion and Euler angle representa-

tions exactly, but did not explain why the maximum error is always

large.

Unsatisfied by these explanations, we approached this problem

from a different view. By discarding the pre-designated representa-

tion mapping and giving the network freedom to choose its own

mapping, we realized that local behaviors of the mapping from

SO(3) to the quaternions or the Euler angles, such as discontinu-

ities, do not adequately address the non-existence of correct rotation

estimation networks. Instead, the fundamental cause is the topolog-

ical properties of the rotation group SO(3) and the group of unit
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quaternions Sp(1), in particular the fact that Sp(1) is a non-trivial
universal cover of SO(3) and the existence of non-contractible loops
in SO(3).
Continuing along this path, we discovered that if the input to

the rotation estimation problem has rotational symmetry, then the

effective topology of the input space could change, which causes the

previously proposed embeddings of SO(3) to become ineffective.

This prompted us to seek alternative solutions. In an attempt to

eliminate the root of the problem which is non-contractible loops

in the input space, we discovered that we can divide the input

space into finitely many contractible subsets, so that each subset

is free of non-contractible loops and a continuous mapping from

this subset to the correct representation exists. Based on this, we

propose the self-selecting ensemble, which is a universally effective,

representation-independent method for rotation estimation, which

is effective for a wide range of symmetries in combination with a

wide range of rotation representations.

Specifically, in this paper, we

• Give a topological argument that continuous functions from

a 3D rotation to its correct quaternion or Euler angle repre-

sentation does not exist;

• Establish that a 3D rotation estimation network using quater-

nions and Euler angles as output representations is guaran-

teed to produce 180
◦
error on some input;

• Prove that in the presence of symmetry, a 3D rotation es-

timation network using an embedding of SO(3) as output
representation is also guaranteed to produce large error, with

error bounds calculated for each different symmetry;

• Propose the self-selecting ensemble, which is provably able

to avoid the occurrence of large errors and requires mini-

mal additional computation and no additional supervision in

training;

• Identify the necessary number of networks required in a

successful ensemble under different combinations of input

symmetries and output representations;

• Present experimental results that verify our theoretical anal-

yses.

2 RELATED WORKS

2.1 Rotation Representations for Machine Learning and
Their Continuity

Before the wide adoption of deep learning, the problem of rotation

representation discontinuity in machine learning has been been

noted in [Saxena et al. 2009]. Indeed, [Saxena et al. 2009] has al-

ready paid special attention to ambiguities caused by symmetric

objects. However, they did not give a rigorous treatment of rotation

representation continuity, in particular quaternions and Euler an-

gles which are very commonly used, and their proposed solution for

symmetric objects produces a different representation for each kind

of symmetry. A more formal definition of the continuity of rotation

representation is presented in [Zhou et al. 2019], and they showed

that quaternion, Euler angle and axis-angle representations are in-

deed discontinuous. A 6D and a 5D representation are proposed,

which meet their definition of a continuous representation and are

shown to outperform the discontinuous representations in rotation

estimation problems. Using the same definition of continuity, other

continuous representations are proposed in later works: [Levinson

et al. 2020] replaces the Gram–Schmidt orthogonalization in the

6D representation with SVD orthogonalization, and [Peretroukhin

et al. 2020] represents a rotation as the solution of a Quadratically-

Constrained Quadratic Program. However, these later works did not

pay attention to complications caused by symmetric objects, and

did not give an explanation of the occurrence of large error.

2.2 Rotation Estimation by Classification
Using classification for regression is not a new idea. In the area of

rotation estimation, one way is to divide the range of each of the

three Euler angles into buckets, and predict each one using classifi-

cation [Su et al. 2015; Tulsiani and Malik 2015]. A precise estimation

of these angles would then require a large number of buckets. To

reduce the number of buckets, a hybrid approach combining classifi-

cation and regression has been proposed in [Mahendran et al. 2018],

where each bucket gives a mean value to which an offset is added.

In these methods, the number of buckets is more or less arbitrary or

determined by trial and error, where in our approach the number of

functions in the ensemble is based on solid theoretical foundation

and is provably optimal. In addition, the range of each bucket is

learned automatically and not hand-designed. We also point out

that in a classification-regression hybrid method, the continuity

problem persists if the same offset function is shared by all buckets.

3 MOTIVATING EXAMPLE: 2D ROTATION ESTIMATION
For a better understanding of our theory and method, we would like

to start our discussion from an extremely simple problem: 2D rota-

tion estimation using neural networks. We have a two-dimensional

shape that can rotate freely in the plane around its center. The shape

does not have any symmetry. One particular position is considered

“canonical”. Given an image of some rotated version of this shape, we

want to compute its rotation angle relative to the canonical position.

If the range of possible rotations is unconstrained and the network

is assumed to be continuous, then it seems impossible to ensure

that the network gives the correct output for all possible inputs.

People have proposed explanations for this failure. In particular, one

argument is that the “correct” function that maps a rotated shape to

its rotation angle is not continuous, and thus a continuous network

cannot compute such a function correctly for all inputs. A specific

example of such an argument might be as follows:

Proof. Since the input is uniquely determined by a 2D rotation,

let us identify an input with a rotation matrix

[
𝑎 −𝑏
𝑏 𝑎

]
∈ SO(2) with

𝑎2 + 𝑏2 = 1. We want the output angle to be in the range (−𝜋, 𝜋].
Then, the correct function would be( [

𝑎 −𝑏
𝑏 𝑎

] )
= atan2(𝑏, 𝑎) (1)

In other words, if we let 𝑅2 (𝜃 ) =
[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

]
, then 𝑓 (𝑅2 (𝜃 )) =

𝜃 − 2𝜋 · ⌈𝜃−𝜋
2𝜋 ⌉ (Here the subscript 2 means two dimensional). 𝑓

is not continuous at 𝑅2 (𝜋) =
[ −1 0

0 −1
]
, since lim𝜃→𝜋− 𝑓 (𝑅2 (𝜃 )) =

𝜋 ≠ −𝜋 = lim𝜃→𝜋+ 𝑓 (𝑅2 (𝜃 )).
Since the network is continuous, it cannot compute 𝑓 correctly

everywhere. □
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We argue, however, that such a proof is flawed. It only proves

the case where the range of output is required to be (−𝜋, 𝜋]. Such
a requirement is not justified: any two rotation angles that differ

by an integer multiple of 2𝜋 refer to the same rotation. Instead of

choosing one of the equivalent angles as “the” correct output, the

output of the network should be considered correct as long as it

refers to the same rotation as the input.

From a neural network training perspective, the flawed proof

reflects the treatment of this problem as an ordinary regression

problem where to each input is associated a “ground truth” output

and the network is trained to learn the mapping from an input to

the ground truth output. Specifically, the network, let us call 𝑁 , is

trained to minimize E𝑀 [|𝑁 (𝑀) − 𝑓 (𝑀) |], where the expectation is

taken over some distribution over SO(2). Such a treatment removes

the flexibility of the network to choose its own output range, thus

potentially preventing it from learning a correct function should

such functions exist.

In contrast, the most general training procedure should let the

network minimize the difference between the output and the input

“modulo 2𝜋”, that is, the distance between two 2D rotations should

be defined as:

𝑑2 (𝑅2 (𝛼), 𝑅2 (𝛽)) = min

𝑘∈Z
|𝛼 − 𝛽 + 2𝑘𝜋 | (2)

This would no longer correspond to minimizing the difference of

the network to any predetermined “ground truth” function. Since

under this view the unique ground truth does not exist anymore, we

cannot prove that a neural network that computes the rotation angle

correctly for all inputs does not exist by simply picking one possible

correct function and showing that it is not continuous. Instead we

must prove that all functions that give correct rotation angles must

have discontinuities, or equivalently, that all continuous functions

must produce an error on some input.

In fact, we are able to achievemore than proving that a universally

correct network does not exist: we can show that for any network,

there exists an input such that the output of the network differs

from the correct rotation angle by 𝜋 , which is the largest possi-

ble difference between two 2D rotations. We have the following

theorem:

Theorem 1. For any continuous function 𝑓 : SO(2) → R, there
exists𝑀 ∈ SO(2) such that 𝑑2 (𝑀,𝑅2 (𝑓 (𝑀))) = 𝜋 .

Before introducing a rigorous proof, we examine an intuitive

demonstration that will later help us understand the 3D case. In

figure 1, at the top left is a 2D shape in its canonical position. Any

angle of the form 2𝑘𝜋 with 𝑘 ∈ Z would be a correct rotation angle,

and these are marked on the number line to the right with blue and

green triangles. The red diamonds mark the angles (2𝑘 + 1)𝜋 for

𝑘 ∈ Z: these are the angles which differ from the correct angles

by 𝜋 . They separate the number line into disjoint intervals, each

containing one of the correct angles and are colored accordingly.

We start rotating the shape counterclockwise. The marks on the

number line moves to the right. After completing one full circle,

the shape returns to the canonical position but everything on the

number lines has moved to the right by 2𝜋 . In particular, the blue

regions and the green regions have exchanged their positions.

Fig. 1. Demonstration of the idea for the proof of theorem 1

Now consider any continuous function 𝑓 that maps the input

shape to an angle. If at any time the function value coincides with

a red diamond, then on that input it produces an error of 𝜋 . If the

initial function value happens to be one of the red diamonds, then

we have found such an input. Otherwise, since at the end the shape

returns to the same position as the beginning, the function must

also give the same value at the end as at the beginning, which means

if the initial function value is in the blue region, then at the end

it must be in a green region, and vice versa. In any case, since the

function value changes continuously, to move between a blue region

and a green region it must cross the border between two regions

somewhere in the middle, at which point it hits a red diamond.

We can now proceed to capture this intuition precisely in the

following proof of theorem 1:

Proof. For any 𝑓 , let ℎ(𝜃 ) = 𝜃 − 𝑓 (𝑅2 (𝜃 )) −𝜋 and ℎ̂(𝜃 ) = ℎ(𝜃 ) −
2𝜋 · ⌈ℎ (0)

2𝜋 ⌉ for all 𝜃 ∈ R.
−𝑎 < 𝑥 − 𝑎 · ⌈𝑥𝑎 ⌉ ≤ 0 for all 𝑥 ∈ R and 𝑎 > 0, so −2𝜋 < ℎ̂(0) ≤ 0.

Since 𝑅2 (0) = 𝑅2 (2𝜋) =
[
1 0

0 1

]
, ℎ̂(2𝜋) − ℎ̂(0) = ℎ(2𝜋) − ℎ(0) =

(2𝜋 − 0) − (𝑓 (𝑅2 (2𝜋)) − 𝑓 (𝑅2 (0))) = 2𝜋 , so 0 < ℎ̂(2𝜋) ≤ 2𝜋 .

𝑓 and 𝑅2 are both continuous, so ℎ̂ is also continuous. ℎ̂(0) ≤ 0

and ℎ̂(2𝜋) > 0, by the intermediate value theorem, there exists

𝜃0 ∈ [0, 2𝜋) such that ℎ̂(𝜃0) = 0. Then

𝑑2 (𝑅2 (𝜃0), 𝑅2 (𝑓 (𝑅2 (𝜃0)))) (3)

=min

𝑘∈Z
|𝜃0 − 𝑓 (𝑅2 (𝜃0)) + 2𝑘𝜋 |

=min

𝑘∈Z
|𝜃0 − 𝑓 (𝑅2 (𝜃0)) − 𝜋 − 2𝜋 · ⌈ℎ(0)

2𝜋
⌉ + (2𝑘 + 1)𝜋 |

=min

𝑘∈Z
|ℎ̂(𝜃0) + (2𝑘 + 1)𝜋 |

=𝜋
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That is, we have found 𝑀 = 𝑅2 (𝜃0) ∈ SO(2) such that 𝑑2 (𝑀,

𝑅2 (𝑓 (𝑀))) = 𝜋 . □

Nevertheless, the function 𝑓 in equation 1 is discontinuous at

only one input rotation. Under the new approach where we do not

pick a unique ground truth function, the network is free to learn

to place this discontinuity elsewhere. For example, let 𝑔(𝑅2 (𝜃 )) =
𝜃 − 2𝜋 · ⌊ 𝜃−2𝜋

2𝜋 ⌋, then the discontinuities of 𝑓 and 𝑔 are different.

Each of 𝑓 and 𝑔 gives a correct rotation angle in their respective

continuous ranges, and the two ranges together cover the whole

SO(2). In differential geometry terms, each function computes a

chart and the two charts make up an atlas. We will see how this

atlas can help us solve rotation estimation correctly using neural

networks.

4 THEORETICAL RESULTS
The central idea of our theory is that the guaranteed large error in

rotation estimation with neural networks is caused by two factors:

that the output space is a non-trivial covering space of the input

space, and that there exist non-contractible loops in the possible

input range. We show that this is the case for 3D rotation estimation

using quaternions as output, just like using angles for 2D rotations.

We further show that attempting to make the output space identical

to the input space by using an embedding of SO(3) does not solve
this problem completely, since when symmetry is present in the

input, the effective topology of the input space is a homogeneous

space of SO(3), thus reintroducing the covering space problem. We

instead propose using an ensemble of multiple networks, each re-

sponsible for a contractible subset of the input space that collectively

cover the whose space.

4.1 3D Rotation Estimation
We have proved that there does not exist any continuous function

that maps each 2D rotation to one of its equivalent rotation angles.

Now we try to find an analogous argument for 3D rotations.

There are various representations for 3D rotations, with unit

quaternions and Euler angles being the most popular. We will first

show that there does not exist a continuous function that maps each

3D rotation to one of its quaternion representations, then derive the

same result for Euler angles as a corollary.

The quaternion representation of 3D rotations and the definition

of the distance between two 3D rotations are reviewed in appendix

A. Simply put, the rotation of angle 𝜃 around unit vector (𝑥,𝑦, 𝑧) is
represented by the quaternions ±(cos 𝜃

2
+ (𝑥 i + 𝑦j + 𝑧k) sin 𝜃

2
).

A useful property is that the distance between two 3D rotations

represented by quaternions q and r is given by

𝑑3 (𝑅q (q), 𝑅q (r)) = 2 arccos |r · q| (4)

Where 𝑅q (q) is the rotation represented by q and r · q = Re(rq) is
the dot product of q and r, seen as 4-vectors.

Since q and −q represent the same rotation for any q, to convert

from a rotation matrix to its quaternion representation requires

breaking ties. A common way is to choose between q and −q the

one with positive scalar part, and positive coefficient of i if the scalar

part is zero, and so on:

𝑓 (𝑀) =


𝑎
2
+ 𝑚32−𝑚23

2𝑎 i + 𝑚13−𝑚31

2𝑎 j + 𝑚21−𝑚12

2𝑎 k (𝑎 ≠ 0)
𝑏
2
i + 𝑚21

𝑏
j + 𝑚31

𝑏
k (𝑎 = 0, 𝑏 ≠ 0)

𝑐
2
j + 𝑚32

𝑐 k (𝑎 = 𝑏 = 0, 𝑐 ≠ 0)
k (𝑎 = 𝑏 = 𝑐 = 0)

(5)

𝑎 =
√
1 + tr(𝑀), 𝑏 =

√
2(1 +𝑚11), 𝑐 =

√
2(1 +𝑚22)

This function is not continuous. Consider 𝑟 : R → SO(3), 𝑟 (𝜃 ) =
𝑅q (cos 𝜃

2
+ k sin 𝜃

2
), that is, 𝑟 (𝜃 ) is the rotation around the 𝑧-axis by

angle 𝜃 . Verify that

lim

𝜃→𝜋−
𝑓 (𝑟 (𝜃 )) = k ≠ −k = lim

𝜃→𝜋+
𝑓 (𝑟 (𝜃 )) (6)

Which also proves that no neural network can compute 𝑓 correctly

for all rotations in SO(3). But just like in the 2D case, this argument

pertains to this particular inverse map only, and on its own does

not prove that a continuous inverse of 𝑅q cannot exist.

However, it is true that in general, there is no continuous “inverse”

to a non-trivial covering map. We will use covering spaces exten-

sively, so we give a brief introduction here. Extensive discussions

on this topic can be found in standard algebraic topology texts, e.g.

[Hatcher 2002].

Let𝑋 and 𝑌 be topological spaces and 𝜑 : 𝑌 → 𝑋 be a continuous

surjective map. 𝑌 is called a covering space of 𝑋 with covering map

𝜑 , if for every 𝑥 ∈ 𝑋 , there exists an open neighbourhood 𝑈 of 𝑥

such that 𝜑−1 [𝑈 ] is a disjoint union of open sets in 𝑌 , each being

homeomorphic to𝑈 under 𝜑 . We state the following result:

Theorem 2. Let𝑌 be a non-trivial covering space of𝑋 with covering
map 𝜑 . That is, 𝜑 is not a homeomorphism. Then there does not exist
continuous map 𝑓 : 𝑋 → 𝑌 such that 𝜑 ◦ 𝑓 is the identity map.

Since Sp(1) is a double cover of SO(3), simply applying theorem

2 shows that a continuous inverse to 𝑅q does not exist. The 2D case

of the nonexistence of a continuous inverse to 𝑅2 : R→ SO(2) is
also just a special case of theorem 2, since 𝑅2 is a covering map.

However, this general result does not establish error bounds as in

theorem 1, which is the goal of our next theorem:

Theorem 3. For any continuous function 𝑓 : SO(3) → Sp(1),
there exists𝑀 ∈ SO(3) such that 𝑑3 (𝑀,𝑅q (𝑓 (𝑀))) = 𝜋 .

Proof. For any 𝑓 , let 𝑞 : R→ Sp(1), defined by 𝑞(𝜃 ) = cos
𝜃
2
+

k sin 𝜃
2
. Let 𝑣 (𝜃 ) = 𝑞(𝜃 ) · 𝑓 (𝑅q (𝑞(𝜃 ))). 𝑞(2𝜋) = −1 = −𝑞(0) and

𝑅q (−1) = 𝑅q (1), so, 𝑣 (2𝜋) = −𝑣 (0).
𝑞, 𝑅q and 𝑓 are all continuous, so 𝑣 is continuous. By the inter-

mediate value theorem, there exists 𝜃0 ∈ [0, 2𝜋] such that 𝑣 (𝜃0) =
0. Then, 𝑑3 (𝑅q (𝑞(𝜃0)), 𝑅q (𝑓 (𝑅q (𝑞(𝜃0))))) = 2 arccos |𝑣 (𝜃0) | = 𝜋 .

That is, we have found 𝑀 = 𝑅q (𝑞(𝜃0)) ∈ SO(3) such that 𝑑3 (𝑀,

𝑅q (𝑓 (𝑀))) = 𝜋 . □

Akin to theorem 1, we offer an intuitive demonstration. In figure

2, at the top left is a 3D shape in its canonical position. The ball

besides it is a visualization of Sp(1). Unit quaternions of the form
𝑤 + 𝑥 i + 𝑦j + 𝑧k make up the unit 3-sphere 𝑆3. Due to the difficulty

of showing the whole 𝑆3, here we take the 2D section at 𝑥 = 0. The

two quaternions representing the identity rotation, 𝑞(0) = (1, 0, 0, 0)
and −𝑞(0) = (−1, 0, 0, 0), are marked with a blue and a green circle
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Fig. 2. Demonstration of the idea for the proof to theorem 3

respectively. The red ring are the set of points at quaternion distance

𝜋
2
to 𝑞(0) and −𝑞(0), which would correspond to rotation distance

𝜋 . They actually form a sphere, but here only a 1D section is shown,

which is a great circle. They separate 𝑆3 into two hemi-3-spheres,

each centered at one of 𝑞(0) and −𝑞(0) and are colored accordingly.

We start rotating the shape counterclockwise around the 𝑧-axis.

The marks on the ball moves accordingly. After completing one

full circle, the shape returns to the canonical position but the blue

region and the green region have exchanged their places. Similar to

the case in theorem 1, in the beginning and in the end, the values

of 𝑓 are located in different colored regions, and somewhere in the

middle it must cross the red surface separating the two regions, at

which point it produces an error of 𝜋 .

This can be extended to Euler angles. We discuss it in appendix

D.2.

4.2 The Problem of Symmetry
In this section we show that when the input object has symmetry,

using embeddings as the output of the network does not eliminate

large errors.

Looking back at the demonstrations of theorems 1 and 3, we can

see that the central issue is that the output space is a non-trivial

covering space of the input space which, among other things, means

that for each input there are multiple equivalent outputs that are all

correct. The key technique is then to find a loop in the input space

such that, if the input is continuously altered along this loop, when

the input returns to its initial state some of the equivalent outputs

have continuously exchanged their positions.

But the solution to this seems simple: even without the preceding

analyses, it is obvious that if we use a rotation representation that is

an embedding, none of the issues with quaternions would happen,

since with an embedding, by definition there exists a continuous

function that maps each input rotation to its correct representation,

which is unique. The only drawback might be that the result is a bit

less economical in terms of dimensionality of the representation:

Fig. 3. Estimating the rotation of a shape with symmetry

the minimum 𝑛 for which an embedding SO(2) → R𝑛 exists is 2

and for SO(3) → R𝑛 it is 5. One concrete example of an embedding

SO(3) → R5 is given by [Zhou et al. 2019], which we review in

appendix A.

If for whatever rotation estimation problem we are faced with

it can be ensured that the input space is indeed SO(3), then it is

true that using an embedding as the output rotation representation

enables an arbitrarily small maximum error, with the capacity of

the neural network being the only limiting factor. However, there is

a pitfall: if the input shape has rotation symmetry, then the effective

input space might not be SO(3).
While themost common type of symmetry seen in life is reflection

symmetry, objects possessing rotation symmetry are nevertheless

not uncommon. For example, tables commonly have two-fold or

four-fold rotation symmetry, many beverage containers have a five-

fold rotation symmetry, cardboard boxes have two-fold rotation

symmetry around three different axes. If the input of the rotation

estimation problem is such an object, there could be troubles.

For example, consider the shape in figure 3. The letter F on the

shape in figure 2 has been replaced with N, which has a rotational

symmetry around its center. As a result, when in the canonical

position, the shape is invariant under a rotation of 𝜋 around the

𝑧-axis, 𝑍 = 𝑅q (k). In general, for any 𝑀 ∈ SO(3), applying 𝑀 or

𝑀𝑍 to the canonical position yields indistinguishable results.

We now try to estimate the rotation of this shape with an em-

bedding of SO(3) as the output representation. SO(3), being non-

orientable, is even more difficult to visualize than Sp(1). So, we
have kept the sphere section visualization of Sp(1) in figure 3 but

now each single point in SO(3) would be represented by a pair of

antipodal points on the sphere. To signify this, opposite points are

marked with the same color.

Start from the canonical position. Since the rotation 𝑍 is indistin-

guishable from the identity rotation 𝐼 , both should be considered

correct. 𝐼 is marked with a pair of blue circles and 𝑍 is marked with

a pair of green circles. Rotate the shape counterclockwise around

the 𝑧-axis. After a rotation of 𝜋 , the position of the shape is indis-

tinguishable from the initial position. But the two correct output

rotations have exchanged their positions. We can then conclude, as

before, that at some point the output of the network must be on

the red lines. Note however that this time the red points do not all

give the same error. But it is still possible to conclude that at some
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point the error of the network is no smaller than the smallest error

among all red points.

By introducing symmetry in the shape, we cause some input

rotations to become indistinguishable, so, the effective input space

is not SO(3) anymore. In general, given a shape, let 𝐺 ⊂ SO(3) be
the set of rotations whose actions leave the shape invariant, then it is

easy to see that𝐺 is a subgroup of SO(3). In this paper we consider

finite 𝐺 only. If 𝑅1, 𝑅2 ∈ 𝐺 and𝑀 ∈ SO(3), then the actions of𝑀𝑅1
and 𝑀𝑅2 are indistinguishable, so in the input space they should

be identified. That is, two elements of SO(3) should be identified

whenever they are in the same left coset of 𝐺 . The set of left cosets

of 𝐺 in SO(3) is a homogeneous space of SO(3), denoted SO(3)/𝐺 .

SO(3) is a covering space of SO(3)/𝐺 , and non-trivial if𝐺 is non-

trivial. The covering map 𝜑𝐺 maps𝑀 ∈ SO(3) to the left coset𝑀𝐺 .

Applying theorem 2, we have the following conclusion:

Corollary 4. Let 𝐺 be a finite, non-trivial subgroup SO(3). Then
there does not exist continuous map 𝑓 : SO(3)/𝐺 → SO(3) such that
𝜑𝐺 ◦ 𝑓 is the identity map.

This means that, in a rotation estimation problem, if the input

object has rotation symmetry, then even if the output representation

is an embedding of SO(3), it is guaranteed that any neural network

will produce errors on some input. Note that this does not apply

to embeddings only: any representation for which a continuous

map to SO(3) exists would be problematic, since this map can be

composed with the neural network to produce a continuous map

from the input to SO(3).
In corollary 4 we did not establish error lower bounds like in

theorems 1 and 3. As mentioned in the demonstration, it is relatively

easy to prove that the maximum error is no smaller than half the

distance between the two closest elements of 𝐺 , which is
𝜋
2
for the

two-fold rotation symmetry example. However, this lower bound

is not tight. The proof of a tight lower bound requires advanced

techniques, and is presented in appendix D.

4.3 The Self-selecting Ensemble
Since embeddings of SO(3) fail to provide a universal solution to

rotation estimation problems due to input symmetry, we need to

seek alternative solutions. We show that regardless of symmetry or

output representation, we can always find a set of four functions

so that for each input at least one function gives the correct output,

which enables us to use an ensemble of networks to estimate 3D

rotations correctly.

Neural networks are typically trained with gradient-based meth-

ods, and the gradients are usually computed by back-propagation,

which requires the network to be differentiable and thus continu-

ous. Nevertheless, we often employ discontinuous operations when

making predictions using the trained network, e.g. quantizing a

probability distribution into a class label in classification networks.

Unfortunately this does not work for a regression problem with

a continuous output space. However, by employing an ensemble

trick, it is possible to transform this discontinuity of regression into

a discontinuity of classification.

Recall that in the discussion of 2D rotation estimation, we have

found two versions of atan2 that have different discontinuities. They

can be slightly modify so that they are continuous, while keeping

the property that their correct range cover the whole SO(2). The
learned functions in Figure 5b give an example. Thus we make the

following observation:

Theorem 5. There exist continuous functions 𝑓1, 𝑓2 : SO(2) → R
such that for any𝑀 ∈ SO(2), 𝑅2 (𝑓𝑖 (𝑀)) = 𝑀 for some 𝑖 ∈ {1, 2}.

Or, we can say that there exist an atlas of SO(2) with two charts.

But note that such a set of functions indeed have slightly more

structure than an atlas: each chart only needs to be defined on a

subset of SO(2), while each functionmust be defined and continuous

on the whole SO(2) although each only have to be correct on a

subset. Nevertheless it is not hard to construct such a set of functions

given an atlas.

Now that 𝑓1 and 𝑓2 are continuous, they can be learned by neu-

ral networks. Importantly, on top of these, we can add a classifier

that predicts which function would give the correct output for each

input, which can also be learned by a neural network. During train-

ing time, these functions and the classifier can be trained jointly:

the error of the whole ensemble is the sum of the error of each

individual functions, weighted by the probability assigned by the

classifier. Now the discontinuity only happens at inference time,

when we select the output of the function with the highest assigned

probability. We call this method the self-selecting ensemble.
We try to apply this idea to 3D rotation estimation using quater-

nion representation. We have made the observation that a loop

in the input space that causes equivalent representations in the

output space to exchange places causes the network to fail. Such

loops are always non-contractible. So, our goal is that we need to

partition SO(3) into some number of subsets that do not contain

non-contractible loops. We can then train an ensemble with as many

networks, each only required to be correct on one of the parts. The

simplest way is to let each part themselves be contractible. Indeed,

in the constructions in our proofs, each part is a (topological) ball

or a disjoint union of balls.

For a topological space 𝑋 , the smallest number 𝑘 such that there

exists an open cover {𝑈𝑖 |1 ≤ 𝑖 ≤ 𝑘} of 𝑋 with each𝑈𝑖 contractible

is called the Lusternik–Schnirelmann category (LS-category) of𝑋 , de-

noted cat(𝑋 ). It has been shown in [Takens 1968] that for a smooth

compact manifold 𝑋 , cat(𝑋 ) ≤ dim(𝑋 ) + 1. SO(3) is a smooth com-

pact manifold and dim(SO(3)) = 3, so cat(𝑋 ) ≤ 4, that is, we can

find four contractible subsets of SO(3) that cover it.
To find such subsets, the easiest way is to find such subsets for its

double cover 𝑆3 instead while requiring the membership of 𝑝 and −𝑝
to always be the same for all 𝑝 , so that by identifying antipodal points

we then get suitable subsets for SO(3). Observe the construction
for lower dimensions: as shown in figure 4, 𝑆0 can be covered by

one pair of points; 𝑆1 can be covered by two pairs of arcs; 𝑆2 can be

covered by three pairs of caps. Following the same pattern, 𝑆3 can

be covered by four pairs of hyper-caps. In (𝑤, 𝑥,𝑦, 𝑧) coordinates,
the four subsets consists of points with |𝑤 | > 1

2
− 𝜖 , |𝑥 | > 1

2
− 𝜖 ,

|𝑦 | > 1

2
− 𝜖 and |𝑧 | > 1

2
− 𝜖 , respectively, for some small 𝜖 > 0.

We can then construct a set of four continuous functions such

that for every input rotation at least one of them gives a correct

quaternion representation.
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Fig. 4. Covering 𝑆𝑛 with (𝑛 + 1) center-symmetric pairs of contractible
subsets, 𝑛 = 0, 1, 2

Theorem 6. There exist continuous functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 : SO(3)
→ Sp(1) such that for any 𝑀 ∈ SO(3), 𝑅q (𝑓𝑖 (𝑀)) = 𝑀 for some
𝑖 ∈ {1, 2, 3, 4}.

We can also show that a set of 4 functions is optimal. Indeed, a

set of 3 functions can do no better than a single function in terms of

maximum error, which is a stronger result than what can be derived

from the general theory of LS-category:

Theorem 7. For any three continuous functions 𝑓1, 𝑓2, 𝑓3 : SO(3) →
Sp(1), there exists 𝑀 ∈ SO(3) such that 𝑑3 (𝑀,𝑅q (𝑓𝑖 (𝑀))) = 𝜋 for
all 𝑖 ∈ {1, 2, 3}.

Proofs of theorems 6 and 7 can be found in appendix D, along

with similar results for Euler angles, for which we additionally need

to solve the problem of gimbal lock.

Thus far we have shown that 3D rotation estimation of non-

symmetric object with quaternion or Euler angle output can be

solved with an ensemble of four networks. But this is no better than

using an embedding of SO(3), which does not require an ensemble.

The true strength of the ensemble method is that it works equally

well on objects with rotation symmetry, where an embedding fails:

Theorem 8. Let 𝐺 be a finite subgroup of SO(3), then there exist
continuous functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 : SO(3)/𝐺 → SO(3) such that for
every𝑀 ∈ SO(3)/𝐺 , 𝜑𝐺 (𝑓𝑖 (𝑀))) = 𝑀 for some 𝑖 ∈ {1, 2, 3, 4}.

This would also follow from the property of the LS-category,

since for a finite subgroup 𝐺 of SO(3), SO(3)/𝐺 is again a smooth

compact manifold of dimension 3. Note that although the theorem

is stated for using an embedding, it is equally valid for quaternion

representations: as we have discussed extensively, the key to the

construction of a successful ensemble is to find a collection of con-

tractible subsets that cover the input space, and the choice of output

space matters little.

Unlike the non-symmetric case, the derivation for a tight lower

bound of maximum rotation estimation error on SO(3)/𝐺 using

only one function is much more complicated, as is the construction

of four open subsets that cover SO(3)/𝐺 . These will be discussed in

appendix D.

5 EXPERIMENTS
In this section we verify our theoretical results with four 3D rota-

tion estimation experiments. The first experiment is a simple 2D toy

problem: the input is a simple rotated square, with either a letter F

or N resulting in different symmetries. The network is trained to

estimate its rotation, relative to a fixed position regarded as canoni-

cal. The second experiment is a 3D toy problem, with input being a

simple cube drawn with orthographic projection and flat coloring.

In the Third experiment, the inputs are changed to photorealistic

renderings of 3D models of various chairs and tables. In the fourth

experiments, the inputs are changed to point clouds of those chairs

and tables.

5.1 Network and Training
In all of our experiments, whenever an ensemble of networks is

desired, all networks in the ensemble as well as the classifier are

implemented as a single network that branches only at the last layer,

so that comparing to a non-ensemble with just a single network, an

ensemble requires only a little bit of additional computation.

For the first three experiments, we use convolutional networks,

with input image size of 256 × 256. For experiment 4, we use a

network that is similar to PointNet [Qi et al. 2017] on a high level

but much simpler. The specific architecture is unimportant as far as

qualitative results are concerned, and our networks only serve as

examples. As a reference, the sequence of layers is given in Table 7

in appendix B.

Since we will be considering symmetric objects, rotation distance

in such cases should be properly defined. Define the rotation dis-

tance between𝑀1, 𝑀2 ∈ SO(3) under symmetry 𝐺 as:

𝑑𝐺 (𝑀1, 𝑀2) = min

𝑆 ∈𝐺
𝑑3 (𝑀1, 𝑀2𝑆) (7)

That is, the distance from𝑀1 to𝑀2 under symmetry𝐺 is the shortest

distance from𝑀1 to any rotation that is indistinguishable from𝑀2

under 𝐺 .

The loss function is computed as follows: Whether the input is a

rendered image or a 3D point cloud, it can always be identified by a

rotation relative to the canonical position. So we just use𝑀 ∈ SO(3)
to refer to the input. On input𝑀 , let 𝑓1 (𝑀), . . . , 𝑓𝑛 (𝑀) be the output
of an ensemble of size 𝑛. Let 𝑤1 (𝑀), . . . ,𝑤𝑛 (𝑀) be the weights

assigned to each branch in the ensemble by the classifier. These

“weights” are not exactly probabilities as usually is the case for

classification problems, and they are not required to be positive and

sum to 1. Then, the loss L of the ensemble on input𝑀 of an object

with symmetry 𝐺 is computed as:

𝑤 (𝑀) = 1

𝑛

𝑛∑
𝑖=1

𝑤𝑖 (𝑀)

L(𝑀) =
𝑛∑
𝑖=1

max{𝑤𝑖 (𝑀) −𝑤 (𝑀) + 1

𝑛
, 0} · 𝑑𝐺 (𝑓𝑖 (𝑀), 𝑀) (8)

In particular, this training procedure is weakly supervised in that

the exact division of the input space into contractible subsets and

the exact form of the mapping from the input to the output on

each subset is not used as training labels. Instead, only the rotation

distance function is required, which is nomore than what is required

to train a single non-ensemble rotation estimation network.

Note that objects with different symmetries can be mixed in the

same dataset, and the form of the loss function for each individual

object can thus be different.

The most important part of our theoretical results is the establish-

ment of lower bounds of maximum error for certain representations
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and ensemble sizes, so we are interested in trying to lower the max-

imum error of the network. However, uniform random sampling of

the possible input space minimizes the expected error rather than

the maximum. So we have adjusted the training procedure: rather

than sampling a new batch for each iteration, after each iteration

we sort the samples in the current training batch by their error,

keep the larger half of them, then draw half a batch of new samples.

These are combined to form the training batch of the next iteration.

All networks are trained with the Adam optimization algorithm,

with batch size 16 and learning rate 10
−4
. For experiment 1, the

training time is 40, 000 iterations. For experiments 2 and 3 it is

200, 000 iterations and for experiment 4 it is 120, 000 iterations.

To ensure that the whole SO(2) or SO(3) is covered rather than

just training on a small finite subset, instead of preparing training

samples beforehand, all training data are generated on the fly during

training by randomly sampling a rotation, transforming the object

with that rotation, then either rendering it for image input or just

taking the transformed point coordinates for point cloud input.

5.2 2D Toy Problem
This experiment is included to show the actual functions learned

by the network. The inputs are simple squares having letter F (with

𝐶1 symmetry, i.e. no symmetry) or N (with 𝐶2 symmetry) on them.

For each of these two letters, we train two rotation angle estimation

networks, one using a single network, the other using a two-part

ensemble. The functions learned by these networks are shown in

Figure 5. In each figure, the upper penal is the output of each part

in the ensemble, and the lower penal is the weight assigned by the

classifier. Each color represents one part in the ensemble. For each

input, the output with the highest weight is shown with thick lines.

We can clearly see that the single networks give correct outputs

in most of the input range but produce high errors near the place

where it have to jump between two equivalent angles. In contrast, in

the ensembles, the thick lines always give the correct output and is

able to produce a discontinuity despite all functions in the ensemble

being continuous.

5.3 3D Toy Problem
For the second experiment, the inputs are simple orthographic draw-

ings of a colored cube. There is no difference between the training

and testing data. By adjusting the color of each face, it is possible to

produce several different symmetries. For example, if all faces are

colored differently, the cube will not have any rotation symmetry

(𝐶1); if the front and back faces are of the same color and the left

and right faces are of the same color, the cube will have two-fold

rotation symmetry (𝐶2), and so on. Examples of cubes with differ-

ent symmetries are shown in Figure 6. One complication is that if

the view is facing one face directly, then only that face is visible

and without knowing the color of other faces it is not possible to

uniquely determine the rotation of the cube. To solve this problem,

on each face, beside each edge, we paint a color strip with the color

of the adjacent face.

The experiment is repeated under 5 different configurations. In

four of them, the dataset consists solely of images of one type of

symmetry, with the symmetry being 𝐶1, 𝐶2, 𝐶4 and 𝐷2 for each. In

(a)𝐶1 symmetry, single network. (b)𝐶1 symmetry, 2-part ensemble.

(c)𝐶2 symmetry, single network. (d)𝐶2 symmetry, 2-part ensemble.

Fig. 5. Functions learned by the 2D rotation estimation networks.

(a)𝐶1 symmetry (b)𝐶2 symmetry (c)𝐶4 symmetry (d) 𝐷2 symmetry

Fig. 6. Drawings of cubes with different symmetries.

the fifth configuration images of 𝐶1 symmetry and 𝐶2 symmetry

are mixed in equal proportions. For each kind of symmetry, the

color assignment is fixed. For the experiments where cubes of dif-

ferent symmetries are mixed, each symmetry is assigned a different

background color to help the network more easily tell them apart.

For the 𝐶1 and 𝐶2 symmetries, we compare the result of using

the quaternion, the Euler angle, the 6D embedding in [Zhou et al.

2019], the SVD method in [Levinson et al. 2020] and the QCQP

method in [Peretroukhin et al. 2020]. We then observe that the qual-

itative distinction is between embedding-type (6D, SVD, QCQP) and

non-embedding-type (Euler angle, quaternion) of representations,

and the difference within each group is quantitative. For the other

symmetries in this experiment, as well as for the subsequent two

experiments, we only compare one kind of representation from each

ACM Trans. Graph., Vol. 40, No. 4, Article 167. Publication date: August 2021.



Eliminating Topological Errors in Neural Network Rotation Estimation Using Self-selecting Ensembles • 167:9

type as a representative: quaternion for the non-embedding-type

and the 6D embedding for the embedding-type.

We tested each network with 500, 000 randomly sampled rota-

tions. The results are shown in Tables 1 through 3. In addition, loss

distribution curves have been included in Figure 9 in appendix C.

Each table lists the mean and maximum error of each representa-

tion. “Mixed Euler” is the four-part ensemble with two 𝑥-𝑦-𝑧 Euler

angles and two 𝑥-𝑧-𝑦 Euler angles, while the other Euler angle en-

sembles are homogeneous. Rows marked with a red up-pointing

triangle means that theoretically this representation should produce

maximal maximum error (120
◦
for 𝐷2 symmetry and 180

◦
for the

rest). Rows marked with a blue down-pointing triangle means that

theoretically this representation should produce small maximum

error.

The results for 𝐶1 symmetry is shown in Table 1. We can see

that embedding-type representations solves the rotation estimation

problem in the non-symmetric case satisfactorily, while for the non-

embedding-type representations a four-part ensemble is need, and

with fewer than 4 networks, near-180
◦
errors are guaranteed to

occur. We can also see that the mixed-type Euler angle ensemble

gives lower maximum error than the homogeneous ensemble, albeit

just barely.

Note that while inputs producing 180
◦
errors are guaranteed

to exist for some representations, in general they make up only a

subset of measure zero in the whole input space, which means it

is virtually impossible for a random input to produce 180
◦
error.

However for any 𝜖 > 0, errors at least (180−𝜖)◦ occur with nonzero

probability, and by increasing the number of test samples we can

produce arbitrarily close to 180
◦
maximum error.

The results for𝐶2 symmetry is shown in Table 2. The mixed Euler

ensemble is not used since the construction we gave is specifically

for the non-symmetrical setting. In this case, a single 6D embedding

network gave a maximum error of nearly 180
◦
, despite being an

embedding. The SVD and QCQP representations, however, give

maximum errors of nearly 90
◦
. The mapping from SVD or QCQP

representation to SO(3) is not continuous everywhere, and thus the
lower bound of maximum error of 180

◦
derived in appendix D do

not exactly apply. But we have nevertheless observed that a single

network using either representation fails to prevent the occurrence

of large errors in the symmetric case. Incidentally, the 90
◦
error

bound is the same that can be observed from the demonstration in

Figure 3. Further theoretical investigation is need to establish the

lower bound for these representations.

On the other hand, the four-part ensemble of each of these repre-

sentations all give small error.

The smaller-sized ensembles give varying errors. Indeed, unlike

in the non-symmetric case, the lower bound of maximum error for

smaller-sized ensembles is smaller than 180
◦
.

For the 𝐶4, 𝐷2 and mixed 𝐶1/𝐶2 symmetries, we tested four-

part quaternion ensemble, single 6D embedding and four-part 6D

embedding ensemble only. The results are given in Table 3. In each

configuration, the ensembles give small error but the single 6D

embedding network gives maximum error close to the theoretical

bound. In particular, the error of nearly 120
◦
for𝐷2 symmetry serves

to verify our calculation of lower bound in appendix D: we predicted

that with 𝐷𝑛 symmetry the lower bound for maximum error should

Table 1. Mean and maximum error of various representations on the toy
problem with𝐶1 symmetry.

Representation Mean err. (
◦
) Max err. (

◦
)

Euler ×1 126.5082 180.0000 △
Euler ×2 3.2577 179.5049 △
Euler ×3 1.4588 178.0552 △
Euler ×4 1.4751 8.1049

Mixed Euler 1.5434 7.6233 ▽
Quat ×1 4.8754 179.8199 △
Quat ×2 1.7230 179.4418 △
Quat ×3 1.0384 178.8919 △
Quat ×4 1.0038 4.6940 ▽
6D 1.0242 3.6379 ▽
SVD 0.9225 3.6405 ▽
QCQP 1.0017 3.6695 ▽

be arccos(− sin
2 𝜋
2𝑛 ). Plugging in 𝑛 = 2 gives arccos(− sin

2 𝜋
4
) =

arccos(− 1

2
) = 120

◦
.

Broadly, we can draw the conclusion that for quaternion and Eu-

ler angle representations, both the symmetric and non-symmetric

3D rotation estimation problem can be solved with a four-part en-

semble but not a smaller ensemble, while with embedding-type

representations, non-symmetric case can be solved with a single

network but for the symmetric case an ensemble is still required.

Stated differently, the self-selecting ensemble provides a unified

method for solving 3D rotation estimation problems, regardless of

rotation representation or object symmetry.

In particular, the results for the mixed 𝐶1/𝐶2 symmetry shows

that although SO(3) and SO(3)/𝐶2 are different spaces and thus the

collection of four contractible subsets that cover them are also dif-

ferent, a single four-part ensemble can handle them simultaneously.

5.4 Object Rotation Estimation From Images
In this experiment we solve the same problem as in experiment 2,

estimating the rotation of an object from an image, but under a more

practical setting: we use rendered 3D models of tables and chairs.

We gathered 102 chairs and 124 tables from 3D Warehouse
1
. We

chose these models specifically for their symmetry: we inspected

each model to ensure that none of the chair models has nontrivial

symmetry and the table models all have two-fold rotation symmetry

(𝐶2).

Real-life objects are rarely perfectly symmetric, and this is re-

flected in our setup: the symmetry needs not be exact. The texture

can be slightly asymmetric, and tiny parts may be present on one

side but not on the other. The difference only has to be small enough

so that it is hard for the network to distinguish between two views

that differ by a rotation of 180
◦
around the 𝑧-axis.

Examples of these models are shown in Figure 7. The models are

so aligned that in their canonical position, a person sitting on a

chair would face the positive 𝑥 direction and a table would have its

longer side parallel to the 𝑥-axis.

1
https://3dwarehouse.sketchup.com/
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Table 2. Mean and maximum error of various representations on the toy
problem with𝐶2 symmetry.

Representation Mean err. (
◦
) Max err. (

◦
)

Euler ×1 102.3217 179.8983 △
Euler ×2 2.6732 178.5300

Euler ×3 1.7388 109.7955

Euler ×4 1.2381 18.8490

Quat ×1 5.9578 178.9537 △
Quat ×2 1.6456 111.6298

Quat ×3 1.0721 80.4804

Quat ×4 1.0855 5.2841 ▽
6D ×1 13.4844 179.8992 △
6D ×2 1.4515 179.1538

6D ×3 1.0352 106.9555

6D ×4 1.0292 9.3179 ▽
SVD ×1 1.7343 89.9928

SVD ×4 0.8699 4.3780 ▽
QCQP ×1 2.4835 89.9885

QCQP ×4 0.9074 3.6334 ▽

Table 3. Mean and maximum error of various representations on the toy
problem with𝐶1/𝐶2,𝐶4 or 𝐷2 symmetries.

Symmetry Representation Mean err. (
◦
) Max err. (

◦
)

Quat ×4 1.2139 6.4589 ▽
𝐶1/𝐶2 6D ×1 12.5738 179.9038 △

6D ×4 1.0952 6.3162 ▽
Quat ×4 1.1063 13.8207 ▽

𝐶4 6D ×1 6.6305 178.5681 △
6D ×4 0.9179 13.4447 ▽
Quat ×4 0.9058 5.6622 ▽

𝐷2 6D ×1 20.7738 118.8476 △
6D ×4 0.8450 8.3506 ▽

(a) Chairs, all without rotation symmetry

(b) Tables, all with𝐶2 rotation symmetry

Fig. 7. Examples of models used in experiment 3.

Fig. 8. Two non-equivalent rotations that are easily confused.

Table 4. Mean and maximum error on rotation estimation from images.

Object Representation Mean err. (
◦
) Max err. (

◦
)

Chairs

Quat ×4 5.3492 64.8730 ▽
6D 6.8317 65.3484 ▽

Tables

Quat ×4 2.4796 15.5027 ▽
6D ×1 7.8170 178.7823 △
6D ×4 2.2435 15.3726 ▽

We keep 10 each of chairs and tables for testing and use the others

for training. The rendering process needs not be differentiable, so

off-the-shelf renderers can be used.

We found that there are certain rotations that are not equivalent

but are nevertheless difficult to tell apart from a certain view, for

example, when the camera is close to the surface plane of the table as

shown in Figure 8. We consider this type of error as generalization

error, and not the kind of topological error we want to investigate,

so we must eliminate it to isolate topological errors for our analysis.

To make sure that the network receives enough information to

distinguish non-equivalent rotations, for each rotation of the model

we render the front view, left view and top view and concatenate

the three images along the channel dimension to serve as the input

to the network.

We trained our networks on chairs and tables separately. We

tested each network with 100, 000 images. The results are shown in

Table 4 and Figure 10 in appendix C.

We can see that the maximum error on the chairs dataset using

four-part quaternion ensemble or 6D embedding are predicted to be

“small” but they are not as small as in the toy problem. However, the

fundamental difference is the between existence and non-existence

of 180
◦
errors, and the different magnitude of error below that is

only a quantitative difference. The maximum errors are far away

from 180
◦
, so in this sense they are indeed small. We think that this

error is mostly due to the inherent difficulty of this problem, rather

than the topological properties of the representation.

5.5 Object Rotation Estimation From Point Clouds
In this experiment, we solve the same problem of rotation esti-

mation of real-world objects. But instead of rendered images, we

estimate the rotation from point clouds. This setting would be of

more relevance to computer graphics applications, since point cloud

registration is an important problem.
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Table 5. Mean andmaximum error on rotation estimation from point clouds.

Object Representation Mean err. (
◦
) Max err. (

◦
)

Chairs

Quat ×4 4.4065 15.0382 ▽
6D 3.7559 15.0945 ▽

Tables

Quat ×4 3.2760 34.0510 ▽
6D ×1 19.5237 178.4878 △
6D ×4 2.2307 19.8830 ▽

Mixed

Quat ×4 5.1593 39.0340 ▽
6D ×1 8.5855 178.2173 △
6D ×4 5.3365 28.6523 ▽

Table 6. Mean and maximum error of each type of object when training on
the combined dataset.

Object Representation Mean err. (
◦
) Max err. (

◦
)

Chairs

Quat ×4 5.5323 21.1359

6D ×4 5.6780 24.6610

Tables

Quat ×4 4.7863 39.0340

6D ×4 4.9950 28.6523

The point clouds are sampled from those 3D models in experi-

ment 3. Specifically, we sample 2, 000 points from each model us-

ing the Poisson Disk sampling [Corsini et al. 2012] filter in Mesh-

Lab [Cignoni et al. 2008]. Again, to reflect the situation that actual

scanned point clouds are rarely perfectly symmetric, we did not en-

force this perfect symmetry: there is no guarantee that for one point

in the point cloud of a 𝐶2-symmetric table, its reflection through

the 𝑧-axis is also present in the point cloud.

These point clouds are generated and fixed before training. During

training, a rotation is randomly selected and the input is generated

by rotating the point cloud.

It should be noted that if points in a point cloud are stored in

a fixed order, then if a rotation is applied to the point could, this

rotation can be easily recovered by comparing the position of corre-

sponding points, regardless of any possible symmetry of the geo-

metric configuration of the points. However, since in general the

order of points in a point cloud are assumed to have no significance,

neural networks that process point clouds are typically designed

to be order-agnostic, as is the case for PointNet [Qi et al. 2017] on

which our network is based. In such a case, a symmetric point cloud

in two equivalent rotations appear indistinguishable to the network.

We trained our networks on chairs and tables separately, as well

as on the combined set of chairs and tables. We tested each network

with 100, 000 point clouds. The results are shown in Table 5 and

Figure 11 in appendix C.

In general, the results of experiment 3 and 4 reconfirms the find-

ings in experiment 2, but in a more practical setting.

We are also interested in the error of each type of object when

training on the combined dataset, given in Table 6, compared to

when training on each type of object separately. Despite the training

dataset being larger, the error of each type of object when training

on the combined dataset is larger than when training on that type

of object alone. This shows that it is generally more difficult to

handle different types of symmetry at once using the same network.

In particular, as can be seen in Figure 5, with a higher order of

symmetry the weight function must have higher frequency, which

could negatively affect the performance on lower order symmetry,

which favors a low frequency weight function.

6 DISCUSSIONS
One interesting finding is the contrast between our results on rota-

tion estimation from point clouds and those of a similar experiment

in [Zhou et al. 2019]. In their experiments, rotation estimation were

tested on a collection of (non-symmetric) airplane models. Despite

the fact that the 6D and 5D embedding that they have proposed

should in theory give small error, all representations compared in

their experiments gave maximum errors close to 180
◦
, thus failing to

show an important advantage of embeddings over non-embeddings.

Indeed, the authors of [Levinson et al. 2020] repeated the same ex-

periment and their SVD method also gave a maximum error of 180
◦
.

In [Peretroukhin et al. 2020] the same experiment is repeated again,

adding their QCQP method, but the authors did not discuss maxi-

mum error. The difference might be that we carefully checked the

data to rule out near-symmetry in our chairs, which some of their

airplanes might possess, or that our training strategy emphasized

lowering maximum error. Whichever is the case, here in addition to

showing the power of ensembles, our experiments confirmed the

qualitative difference between embeddings and non-embeddings in

the non-symmetric case.

The theoretical thinking behind the idea of the self-selecting

ensemble is to divide a topologically non-trivial input space into

topologically simpler (contractible) parts and use one network to

handle each part, which is not specific to rotation estimation prob-

lems. For example, we might want to produce a 3D hair model

from a portrait photo. Depending on the specific method, this might

involve inferring the 3D direction of a short hair segment from

local image information. In such a case, (𝑥,𝑦, 𝑧) and (−𝑥,−𝑦,−𝑧)
are two indistinguishable directions, which means effectively the

input space is the real projective plane RP2 while the output space
is the 2-sphere 𝑆2. 𝑆2 is a covering space of RP2, so if neural net-

works are employed for this task, topological errors could occur. It

is worthwhile to investigate the application of the ensemble method

to more general problems with nontrivial topology.

7 CONCLUSION
In this paper, from a topological point of view, we gave a rigorous

proof that continuous functions that map rotations to the correct

quaternion or Euler angle representations do not exist, and estab-

lished lower bounds for their maximum error, thus presenting a case

against their use in rotation estimation neural networks. Further-

more, similar negative results are established for rotation estimation

of objects with rotation symmetry using embeddings of SO(3), thus
showing that proposing new rotation representations alone is un-

likely to solve rotation estimation problems satisfactorily under

different symmetries. We proposed the self-selecting ensemble, a

general method independent of the choice of rotation representation,
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and with elaborate theoretical analysis, we proved that a sufficiently

large ensemble eliminates the guaranteed existence of large errors.

We showed with experiments that in practice our method is effective

under many different symmetries and with many different rotation

representations.
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A MATHEMATICS REVIEW

A.1 Quaternion representation of 3D rotations
The unit quaternion representation for 3D rotations is a classic ex-

ample of exceptional isomorphisms. It arises from the fact that the

spin group Spin(3), the (two-fold) universal cover of the special

orthogonal group SO(3), is, as a Lie group, isomorphic to the mul-

tiplicative group of unit quaternions, or, the compact symplectic

group Sp(1). As a result, the quaternion representation has several

nice properties: composition of rotations correspond to multiplica-

tion of quaternions, and the quaternion representation, in a sense,

preserves the metric in SO(3).
The spin group Spin(𝑛) is constructed as a subgroup of the in-

vertible elements of the Clifford algebra Cl
+
0,𝑛 (R) , and in the case

of 𝑛 = 3, we have Cl
+
0,3 (R) � H , which is what gives rise to

Spin(3) � Sp(1). R3 can be embedded in H as the subset of pure

quaternions, by the map

(𝑥,𝑦, 𝑧) ↦→ 𝑥 i + 𝑦j + 𝑧k (9)

or, if we regard 𝑝 = [𝑥 𝑦 𝑧]𝑇 as a column vector and use the dot

product,

𝑝 ↦→ [i j k]𝑝 (10)

By the definition of Clifford algebras, a unit quaternion q ∈ Sp(1)
should act on embedded 3-vectors p = [i j k]𝑝 by the map

p ↦→ qpq (11)

Where q is the conjugate of q. So, if 𝑀 = 𝑅q (q) ∈ SO(3) is the
rotation matrix represented by the quaternion q, we should have

[i j k] (𝑀𝑝) = q( [i j k]𝑝)q (12)

Let q = 𝑎 + 𝑏i + 𝑐j + 𝑑k. Expanding both sides and comparing term

by term, we find that

𝑀 =


1 − 2𝑐2 − 2𝑑2 2(𝑏𝑐 − 𝑑𝑎) 2(𝑏𝑑 + 𝑐𝑎)
2(𝑏𝑐 + 𝑑𝑎) 1 − 2𝑏2 − 2𝑑2 2(𝑐𝑑 − 𝑏𝑎)
2(𝑏𝑑 − 𝑐𝑎) 2(𝑐𝑑 + 𝑏𝑎) 1 − 2𝑏2 − 2𝑐2

 (13)

A.2 3D Rotation Distance
The “difference” between two 3D rotations is again a 3D rotation.

That is, for all 𝑀1, 𝑀2 ∈ SO(3), 𝑀2𝑀
−1
1

∈ SO(3). An important

property of orthogonal matrices is that all their eigenvalues have

length 1. Complex eigenvalues of real matrices always appear in con-

jugate pairs. For an orthogonal matrix, this means their eigenvalues

must be 1, −1 or pairs of complex numbers of the form cos𝜃 ±𝑖 sin𝜃 .
For 3D rotation matrices, their three eigenvalues are exactly 1

and cos𝜃 ± 𝑖 sin𝜃 . The eigenspace of eigenvalue 1 is the rotation

axis and 𝜃 is the rotation angle. The trace of a matrix equals the

sum of its eigenvalues. So, for a 3D rotation matrix𝑀 with rotation

angle 𝜃 , tr(𝑀) = 1 + (cos𝜃 + 𝑖 sin𝜃 ) + (cos𝜃 − 𝑖 sin𝜃 ) = 1 + 2 cos𝜃 ,

so 𝜃 = arccos
tr(𝑀)−1

2
. Thus, the distance between two 3D rotations

is defined as

𝑑3 (𝑀1, 𝑀2) = arccos

tr(𝑀2𝑀
−1
1

) − 1

2

(14)

This can be conveniently computed from the quaternion represen-

tation: let q = 𝑎 + 𝑏i + 𝑐j + 𝑑k. Then,

𝑑3 (𝐼 , 𝑅q (q)) (15)

= arccos

tr(𝑅q (q)) − 1

2

= arccos

2 − 4(𝑏2 + 𝑐2 + 𝑑2)
2

= arccos(2𝑎2 − 1)
=2 arccos |𝑎 |

So, for q, r ∈ Sp(1),

𝑑3 (𝑅q (q), 𝑅q (r)) (16)

= arccos

tr(𝑅q (r)𝑅q (q)−1) − 1

2

=𝑑3 (𝐼 , 𝑅q (rq))
=2 arccos |Re(rq) |
=2 arccos |r · q|

where r · q = Re(rq) is the dot product of q and r, seen as 4-vectors.

Note that the geodesic distance between q and r on the unit 3-sphere
is just the angle between vectors q and r which is

𝑑q (q, r) = arccos(r · q) (17)

which gives us a nice relationship between the metrics in Sp(1) and
SO(3):

𝑑3 (𝑅q (q), 𝑅q (r)) (18)

=2min{𝑑q (q, r), 𝜋 − 𝑑q (q, r)}
=2min{𝑑q (q, r), 𝑑q (q,−r)}

A.3 Embedding of SO(3) in R6 and R5
SO(3) can be embedded in R9 simply by taking the rotation ma-

trix. Note that for any 𝑀 ∈ SO(3), its third column is uniquely

determined by its first two columns, since the third column can

be computed from the cross product of the first two. So it is un-

necessary to keep the last column, which gives us an embedding

SO(3) → R6:

𝑀 ↦→ (𝑚11,𝑚21,𝑚31,𝑚12,𝑚22,𝑚32) (19)

The dimensionality can be further reduced. Notice that𝑚2

12
+𝑚2

22
+

𝑚2

32
= 1, so if we let ℎ =

√
𝑚2

31
+𝑚2

12
+𝑚2

22
+𝑚2

32
=

√
1 +𝑚2

31
then

ℎ > 0 and (𝑚12,𝑚22,𝑚32) never equals (0, 0, 0). Then, 1

ℎ
(𝑚12,𝑚22,

𝑚32,𝑚31) is on the unit 3-sphere and is never (0, 0, 0, 1). We can

then use the stereographic projection to project it onto R3, thus
reducing the dimensionality of the embedding by 1. The end result

is

𝑀 ↦→ (𝑚11,𝑚21, 𝑡 ·𝑚12, 𝑡 ·𝑚22, 𝑡 ·𝑚32) (20)

𝑡 =

√
1 +𝑚2

31
+𝑚31
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Table 7. Network structure.

Experiment 1&2 Experiment 3 Experiment 4

Input:256 × 256 × 3 Input:256 × 256 × 9 Input:𝑛 × 3

Conv(3→ 32,/2) Conv(9→ 32,/2) INBlock(3→ 256)

Conv(32→ 32) Conv(32→ 32) INBlock(256→ 256)

Conv(32→ 64,/2) Conv(32→ 64,/2) INBlock(256→ 256)

Conv(64→ 64) Conv(64→ 64) INBlock(256→ 256)

Conv(64→ 128,/2) Conv(64→ 128,/2) INBlock(256→ 256)

Conv(128→ 128) Conv(128→ 128)

Conv(128→ 256,/2) Conv(128→ 256,/2)
Conv(256→ 256) Conv(256→ 256)

Conv(256→ 256,/2) Conv(256→ 256,/2)
Conv(256→ 256) Conv(256→ 256)

Conv(256→ 256)

Conv(256→ 256)

Conv(256→ 256,/2) Conv(256→ 256,/2)
Conv(256→ 256) Conv(256→ 256)

Conv(256→ 256) Conv(256→ 1024)

Conv(256→ 256) MaxPool

FC(4×4×256→ 512) FC(4×4×256→ 512) FC(1024→ 512)

FC(512→ 512) FC(512→ 512) FC(512→ 512)

FC(512→ 512) FC(512→ 512) FC(512→ 512)

FC(512→ 512) FC(512→ 512) FC(512→ 512)

FC(512→ 512) FC(512→ 512) FC(512→ 512)

FC(512→ 512)

FC(512→ 512)

(Output layer depends on representation and ensemble size)

B NETWORK ARCHITECTURE
Table 7 shows the structure of the networks used in our experiments.

“Conv” are convolutional layers. “/2” means stride 2. “FC” are fully

connected layers. “INBlock” are modified residual blocks: on the

residue branch, the convolution layer is followed by an instance

normalization layer. The number of input channels in experiment 2

will be explained in section 5.4. All convolution and fully connected

layers are followed by Leaky ReLU, they are omitted from the table

for clarity.

C ERROR DISTRIBUTION CURVES
The error distribution curve of the three experiments are shown in

figures 9, 10 and 11. Each figure shows the testing error distribution

by percentile, and the vertical axis is in logarithm scale. For each

error curve, the maximum error is marked with a triangle to the

right.

D ADDITIONAL THEORETICAL RESULTS

D.1 Quaternion Ensembles
Theorem 6. There exist continuous functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 : SO(3)

→ Sp(1) such that for any 𝑀 ∈ SO(3), 𝑅q (𝑓𝑖 (𝑀)) = 𝑀 for some
𝑖 ∈ {1, 2, 3, 4}.

Proof. We give an example of such a set of functions. For clarity,

we define them as functions of quaternions. If we ensure that 𝑓𝑖 (q) =
𝑓𝑖 (−q) for all q ∈ Sp(1) and 𝑖 ∈ {1, 2, 3, 4}, they will be well-defined

functions of rotations. 𝑁 is the normalization function 𝑁 (q) = q
| |q | |

defined for all q ≠ 0. Let

𝑓1 (𝑎 + 𝑏i + 𝑐j + 𝑑k) = (21)
𝑎 + 𝑏i + 𝑐j + 𝑑k (𝑎 ≥ 1

2
)

𝑁 ((1 − 𝑎) + 2𝑎𝑏i + 2𝑎𝑐j + 2𝑎𝑑k) (0 ≤ 𝑎 < 1

2
)

𝑁 ((1 + 𝑎) + 2𝑎𝑏i + 2𝑎𝑐j + 2𝑎𝑑k) (− 1

2
≤ 𝑎 < 0)

−(𝑎 + 𝑏i + 𝑐j + 𝑑k) (𝑎 < − 1

2
)

The definitions of 𝑓2, 𝑓3 and 𝑓4 are analogous, with 𝑏, 𝑐 and 𝑑

respectively playing the role of 𝑎.

Check that these functions are indeed continuous at case bound-

aries and that 𝑓𝑖 (−q) = 𝑓𝑖 (q). For a unit quaternion = 𝑎 +𝑏i+𝑐j+𝑑k,
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 1, so max{𝑎2, 𝑏2, 𝑐2, 𝑑2} ≥ 1

4
. If 𝑎2, 𝑏2, 𝑐2 or 𝑑2

is at least
1

4
, then 𝑓1, 𝑓2, 𝑓3 or 𝑓4 respectively will give the correct

output. □

Theorem 7. For any three continuous functions 𝑓1, 𝑓2, 𝑓3 : SO(3) →
Sp(1), there exists 𝑀 ∈ SO(3) such that 𝑑3 (𝑀,𝑅q (𝑓𝑖 (𝑀))) = 𝜋 for
all 𝑖 ∈ {1, 2, 3}.

Proof. Consider functions 𝑣𝑖 : Sp(1) → R defined by 𝑣𝑖 (q) =

q · 𝑓𝑖 (𝑅q (q)), for 𝑖 = 1, 2, 3. For any q ∈ Sp(1), Since 𝑅q (−q) = 𝑅q (q),
𝑣𝑖 (−q) = −q · 𝑓𝑖 (𝑅q (−q)) = −q · 𝑓𝑖 (𝑅q (q)) = −𝑣𝑖 (q).

Let𝑉 : Sp(1) → R3 defined by𝑉 (q) = (𝑣1 (q), 𝑣2 (q), 𝑣3 (q)), then
𝑉 (−q) = −𝑉 (q) for any q ∈ Sp(1). By the Borsuk–Ulam theorem,

2

there exists q0 ∈ Sp(1) such that 𝑉 (−q0) = 𝑉 (q0), then −𝑉 (q0) =
𝑉 (−q0) = 𝑉 (q0), so 𝑉 (q0) = 0, which means 𝑣1 (q0) = 𝑣2 (q0) =

𝑣3 (q0) = 0. So for 𝑀0 = 𝑅q (q0) ∈ SO(3), 𝑑3 (𝑀0, 𝑓𝑖 (𝑅0)) = 𝜋 for

𝑖 = 1, 2, 3. □

D.2 Euler Angle Ensembles
We extend our proof of error bounds and construction of 4-part

ensembles to Euler angle representations.

Note that a continuous map from Euler angles to one of the

equivalent quaternions does exist. As an example, consider the

extrinsic 𝑥-𝑦-𝑧 Euler angle. The rotation defined by Euler angles

(𝛼, 𝛽,𝛾) is:

𝑅𝑥𝑦𝑧 (𝛼, 𝛽,𝛾) =

𝑐𝛽𝑐𝛾 −𝑐𝛼𝑠𝛾 + 𝑠𝛼𝑠𝛽𝑐𝛾 𝑠𝛼𝑠𝛾 + 𝑐𝛼𝑠𝛽𝑐𝛾
𝑐𝛽𝑠𝛾 𝑐𝛼𝑐𝛾 + 𝑠𝛼𝑠𝛽𝑠𝛾 −𝑠𝛼𝑐𝛾 + 𝑐𝛼𝑠𝛽𝑠𝛾
−𝑠𝛽 𝑠𝛼𝑐𝛽 𝑐𝛼𝑐𝛽

 (22)

Where 𝑠𝜃 = sin𝜃 and 𝑐𝜃 = cos𝜃 . To convert from Euler angles to

quaternions, simply convert each of the three elemental rotations

and multiply them:

𝑄𝑥𝑦𝑧 (𝛼, 𝛽,𝛾) (23)

=(cos 𝛾
2

+ k sin
𝛾

2

) (cos 𝛽
2

+ j sin
𝛽

2

) (cos 𝛼
2

+ i sin
𝛼

2

)

Then we will have 𝑅q (𝑄𝑥𝑦𝑧 (𝛼, 𝛽,𝛾)) = 𝑅𝑥𝑦𝑧 (𝛼, 𝛽,𝛾).

Corollary 9. For any continuous function 𝑓 : SO(3) → R3, there
exists𝑀 ∈ SO(3) such that 𝑑3 (𝑀,𝑅𝑥𝑦𝑧 (𝑓 (𝑀))) = 𝜋 .

2
See e.g. page 174 of [Hatcher 2002]
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(a)𝐶1 symmetry, various (b)𝐶1 symmetry, quaternion (c)𝐶1 symmetry, Euler angle

(d)𝐶2 symmetry, various (e)𝐶2 symmetry, quaternion (f)𝐶2 symmetry, Euler angle

(g)𝐶2 symmetry, 6D embedding (h)𝐶2 symmetry, SVD and QCQP (i)𝐶1/𝐶2 symmetry

(j)𝐶4 symmetry (k) 𝐷2 symmetry

Fig. 9. Loss distribution of different configuration and output representation for the toy problem.
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(a) Chairs (b) Tables

Fig. 10. Loss distribution of different configuration and output representation for rotation estimation from images.

(a) Chairs (b) Tables (c) Mixed

Fig. 11. Loss distribution of different configuration and output representation for rotation estimation from point clouds.

Proof. Assume that there exists continuous 𝑓 : SO(3) → R3

such that for any 𝑀 ∈ SO(3), 𝑑3 (𝑀,𝑅𝑥𝑦𝑧 (𝑓 (𝑀))) ≠ 𝜋 . Then, 𝑔 =

𝑄𝑥𝑦𝑧 ◦ 𝑓 is a continuous function such that for any 𝑀 ∈ SO(3),
𝑑3 (𝑀,𝑅q (𝑔(𝑀))) ≠ 𝜋 , which is a violation of theorem 3. □

The argument for other differently ordered Euler angles are com-

pletely analogous.

Unlike corollary 9 which follows easily from theorem 3, construct-

ing an ensemble of four functions using Euler angle representation

is not as straightforward, due to a peculiarity of Euler angles: gimbal

lock.

Euler angle representation decomposes a rotation into a chain

of three elemental rotations around three fixed axes, and gimbal

lock happens if applying the second rotation to the first axis causes

it to coincide with the third axis. In such cases changing the first

rotation or the third rotation would have the same effect, and the

rotation degree of freedom is reduced by one. As an example, in

extrinsic 𝑥-𝑦-𝑧 Euler angles, gimbal lock happens whenever the

second rotation angle is ±𝜋
2
.

We pick a gimbal lock position and show that any continuous

function from SO(3) to R3 will always produce error somewhere in

its neighbourhood.

Theorem 10. Let𝑈 be any neighborhood of 𝑅𝑥𝑦𝑧 (0, 𝜋
2
, 0) in SO(3).

There exists no continuous function 𝑓 : 𝑈 → R3 such that𝑅𝑥𝑦𝑧 (𝑓 (𝑀))
= 𝑀 for every𝑀 ∈ 𝑈 .

Proof. Assume that such a function 𝑓 exists. It can be checked

that 𝑄𝑥𝑦𝑧 (𝜃, 𝜙, 𝜃 ) ·𝑄𝑥𝑦𝑧 (0, 𝜋
2
, 0) = cos( 𝜋

4
− 𝜙

2
) , so for 0 ≤ 𝜙 ≤ 𝜋 ,

𝑑3 (𝑅𝑥𝑦𝑧 (𝜃, 𝜙, 𝜃 ), 𝑅𝑥𝑦𝑧 (0, 𝜋
2
, 0)) = 𝜋

2
− 𝜙 .𝑈 is a neighbourhood, so

it contains an open ball centered at 𝑅𝑥𝑦𝑧 (0, 𝜋
2
, 0) , so there exists

𝜖 > 0 such that 𝑅𝑥𝑦𝑧 (𝜃, 𝜙, 𝜃 ) ∈ 𝑈 for all 𝜃 ∈ R and
𝜋
2
− 𝜖 < 𝜙 < 𝜋

2
.

If 𝑅𝑥𝑦𝑧 (𝛼, 𝛽,𝛾) = 𝑅𝑥𝑦𝑧 (𝛼 ′, 𝛽 ′, 𝛾 ′), but 𝛽 ≠ 𝑘𝜋 + 𝜋
2
for any 𝑘 ∈ Z,

wemust have (𝛼 ′, 𝛽 ′, 𝛾 ′) = (𝛼+2𝑚𝜋, 𝛽+2𝑛𝜋,𝛾+2𝑘𝜋) or (𝛼 ′, 𝛽 ′, 𝛾 ′) =
(𝛼 + (2𝑚 + 1)𝜋,−𝛽 + (2𝑛 + 1)𝜋,𝛾 + (2𝑘 + 1)𝜋) for some𝑚,𝑛, 𝑘 ∈ Z.
In any case, let

𝑔(𝜃, 𝜙) =
𝑓 [1] (𝑅𝑥𝑦𝑧 (𝜃, 𝜙, 𝜃 )) − 𝜃

𝜋
(24)

where 𝑓 [1] is the first coordinate of 𝑓 . Then for 𝜃 ∈ R and
𝜋
2
− 𝜖 <

𝜙 < 𝜋
2
, 𝑔 is continuous and integer-valued, so it must be con-

stant. But since 𝑅𝑥𝑦𝑧 (0, 𝜙, 0) = 𝑅𝑥𝑦𝑧 (2𝜋, 𝜙, 2𝜋), we have 𝑔(0, 𝜙) −
𝑔(2𝜋, 𝜙) = 2, which is a contradiction. □

If all functions use the same sequence of Euler angle axes, then

they all have the same set of gimbal lock positions, and these cannot

be handled correctly however many functions are used. So, to con-

struct a correct ensemble, Euler angles with different axis sequences
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Fig. 12. Deciding which locations should use the 𝑥-𝑦-𝑧 or 𝑥-𝑧-𝑦 type of
Euler angle

are necessary. Extrinsic 𝑥-𝑧-𝑦 Euler angles have a distinct set of

gimbal lock positions: the rotation defined by 𝑥-𝑧-𝑦 Euler angle

(𝛼, 𝛽,𝛾) is

𝑅𝑥𝑧𝑦 (𝛼, 𝛽,𝛾) =

𝑐𝛽𝑐𝛾 −𝑐𝛼𝑠𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 𝑠𝛼𝑠𝛽𝑐𝛾 − 𝑐𝛼𝑠𝛾

𝑠𝛽 𝑐𝛼𝑐𝛽 −𝑠𝛼𝑐𝛽
𝑐𝛽𝑠𝛾 −𝑐𝛼𝑠𝛽𝑠𝛾 + 𝑠𝛼𝑐𝛾 𝑠𝛼𝑠𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾

 (25)

Compare with 𝑅𝑥𝑦𝑧 in equation 22: at the gimbal lock positions

𝛽 = ±𝜋
2
, the first column of 𝑅𝑥𝑦𝑧 (𝛼, 𝛽,𝛾) is (0,∓1, 0) while the

first column of 𝑅𝑥𝑧𝑦 (𝛼, 𝛽,𝛾) is (0, 0,±1). Indeed, a gimbal-lock-free

ensemble of four sets of Euler angles can be constructed by mixing

these two types of Euler angles. The detailed proof is laborious but

the idea is simple.

Put an arrow on the unit sphere at (1, 0, 0), pointing up towards

(0, 0, 1). Then a 3D rotation can be uniquely identified by its effect on

this arrow. In particular, if we think of (0, 0,±1) as the north/south
pole and represent the rotation as 𝑥-𝑦-𝑧 Euler angle (𝛼, 𝛽,𝛾), then
𝛽 determines the latitude, 𝛾 the longitude, and 𝛼 the heading. 𝑥-𝑧-𝑦

Euler angles can be interpreted similarly if we instead take (0,±1, 0)
as the poles and the 𝑥𝑂𝑧 great circle as the equator.

We will be using four functions, two of the 𝑥-𝑦-𝑧 type and two of

the 𝑥-𝑧-𝑦 type. First, each rotation is assigned either to the 𝑥-𝑦-𝑧 or

the 𝑥-𝑧-𝑦 type by the location of the arrow. To avoid gimbal lock,

the range of latitude assigned to each type must not contain the

polar region. Then, to eliminate non-contractible loops, the arrow

must not be allowed to “go around the globe” within each subset, so

the range of longitude must not be the full circle. The way to do this

is perfectly illustrated by a baseball, as shown in figure 12: the blue

region is assigned to the 𝑥-𝑦-𝑧 type, and the red region is assigned

to the 𝑥-𝑧-𝑦 type.

Then, within each type, each rotation is assigned to one of the

two functions by the heading of the arrow: the arrow must not be

allowed to rotate around itself for a full circle within the subset of

rotations assigned to each function, which is another kind of non-

contractible loop. For example, arrows pointing eastwards relative

to the meridians are assigned to one function, while those point-

ing westwards are assigned to the other function. To summarize,

SO(3) is divided into four overlapping contractible subsets with the

following ranges of latitude, longitude and heading in table 8:

The remaining task is then to define the four functions so that

they produce the correct Euler angle in its assigned range and is

Table 8. The subset assigned to each function, specified by Euler angle type
and range

# Type Latitude(𝛽) Longitude(𝛾 ) Heading(𝛼)

1

𝑥-𝑦-𝑧

[−𝜋
4
, 𝜋
4
]

[− 3𝜋
4
, 3𝜋
4
] [−𝜋

2
, 𝜋
2
]

2 [ 𝜋
2
, 3𝜋
2
]

3

𝑥-𝑧-𝑦 [ 𝜋
4
, 7𝜋
4
] [−𝜋

2
, 𝜋
2
]

4 [ 𝜋
2
, 3𝜋
2
]

continuous on the whole SO(3). We formally state the theorem

about mixed Euler angle 4-part ensembles and give a proof:

Theorem 11. There exists continuous functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 : SO(3)
→ R3 such that for any 𝑀 ∈ SO(3), at least one of the follow-
ing is equal to 𝑀 : 𝑅𝑥𝑦𝑧 (𝑓1 (𝑀)), 𝑅𝑥𝑦𝑧 (𝑓2 (𝑀)), 𝑅𝑥𝑧𝑦 (𝑓3 (𝑀)) and
𝑅𝑥𝑧𝑦 (𝑓4 (𝑀)).

The proof uses essentially the same charts as given in [Grafarend

and Kühnel 2011]. But as we have stated, an ensemble has slightly

more structure than an atlas since each function is required to be

defined and continuous everywhere. In general, given an atlas, we

shrink/expand each chart a bit to create a core region and a margin

so that the core regions of all chars still cover the whole manifold.

We let each function compute its corresponding chart in the core

region and be constant beyond the chart, and blend these two cases

in the margin. We give such a set of functions explicitly.

Proof. Let atan2⊳ be the usual atan2 function with range (−𝜋, 𝜋]
and atan2⊲ be an alternative version with range [0, 2𝜋). Let T be a

parametrized family of functions, defined as follows:

T (𝑎1, 𝑎2, 𝑎3, 𝑎4) (𝑥) =



0 (𝑥 ≤ 𝑎1)
𝑥−𝑎1
𝑎2−𝑎1 (𝑎1 < 𝑥 ≤ 𝑎2)
1 (𝑎2 < 𝑥 ≤ 𝑎3)
𝑎4−𝑥
𝑎4−𝑎3 (𝑎3 < 𝑥 ≤ 𝑎4)
0 (𝑎4 < 𝑥)

(26)

That is, T (𝑎1, 𝑎2, 𝑎3, 𝑎4) is a piecewise linear function defined by

connecting the points (𝑎1, 0), (𝑎2, 1), (𝑎3, 1), (𝑎4, 0) in [𝑎1, 𝑎4] and
constantly 0 beyond that range. Define these instances of T :

T𝛼⊳ = T (−2𝜋

3

,−𝜋

2

,
𝜋

2

,
2𝜋

3

) (27)

T𝛼⊲ = T ( 𝜋
3

,
𝜋

2

,
3𝜋

2

,
5𝜋

3

)

T𝛽 = T (−𝜋

3

,−𝜋

4

,
𝜋

4

,
𝜋

3

)

T𝛾⊳ = T (−5𝜋

6

,−3𝜋

4

,
3𝜋

4

,
5𝜋

6

)

T𝛾⊲ = T ( 𝜋
6

,
𝜋

4

,
7𝜋

4

,
11𝜋

6

)
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Let𝑀 ∈ SO(3) be a rotation matrix. Define these functions:

𝛼1 (𝑀) =
{
atan2⊳ (𝑚32,𝑚33) (𝑚31 ≠ ±1)
𝜋 (𝑚31 = ±1)

(28)

𝛼2 (𝑀) =
{
atan2⊲ (𝑚32,𝑚33) (𝑚31 ≠ ±1)
0 (𝑚31 = ±1)

𝛽1 (𝑀) = − sin
−1𝑚31

𝛾1 (𝑀) =
{
atan2⊳ (𝑚21,𝑚11) (𝑚31 ≠ ±1)
𝜋 (𝑚31 = ±1)

𝑡1 (𝑀) = T𝛼⊳ (𝛼1 (𝑀)) · T𝛽 (𝛽1 (𝑀)) · T𝛾⊳ (𝛾1 (𝑀))
𝑡2 (𝑀) = T𝛼⊲ (𝛼2 (𝑀)) · T𝛽 (𝛽1 (𝑀)) · T𝛾⊳ (𝛾1 (𝑀))
𝑓1 (𝑀) = (𝛼1 (𝑀), 𝛽1 (𝑀), 𝛾1 (𝑀)) · 𝑡1 (𝑀)
𝑓2 (𝑀) = (𝛼2 (𝑀), 𝛽1 (𝑀), 𝛾1 (𝑀)) · 𝑡2 (𝑀)

𝛼3 (𝑀) =
{
atan2⊳ (−𝑚23,𝑚22) (𝑚21 ≠ ±1)
𝜋 (𝑚21 = ±1)

𝛼4 (𝑀) =
{
atan2⊲ (−𝑚23,𝑚22) (𝑚21 ≠ ±1)
0 (𝑚21 = ±1)

𝛽3 (𝑀) = sin
−1𝑚21

𝛾3 (𝑀) =
{
atan2⊲ (𝑚31,𝑚11) (𝑚21 ≠ ±1)
0 (𝑚21 = ±1)

𝑡3 (𝑀) = T𝛼⊳ (𝛼3 (𝑀)) · T𝛽 (𝛽3 (𝑀)) · T𝛾⊲ (𝛾3 (𝑀))
𝑡4 (𝑀) = T𝛼⊲ (𝛼4 (𝑀)) · T𝛽 (𝛽3 (𝑀)) · T𝛾⊲ (𝛾3 (𝑀))
𝑓3 (𝑀) = (𝛼3 (𝑀), 𝛽3 (𝑀), 𝛾3 (𝑀)) · 𝑡3 (𝑀)
𝑓4 (𝑀) = (𝛼4 (𝑀), 𝛽3 (𝑀), 𝛾3 (𝑀)) · 𝑡4 (𝑀)

We prove that 𝑓1, 𝑓2, 𝑓3 and 𝑓4 defined as such meet the requirements

in the theorem. Consider the continuity of 𝑓1. For any𝑀 ∈ SO(3),
find any 𝛼, 𝛽,𝛾 ∈ R such that 𝑅𝑥𝑦𝑧 (𝛼, 𝛽,𝛾).

Case 1:𝑀 ∈ 𝑅𝑥𝑦𝑧 ((−𝜋, 𝜋), (−𝜋
2
, 𝜋
2
), (−𝜋, 𝜋)). −1 < 𝑚31 = − sin 𝛽

< 1, so in this range 𝛼1 (𝑀) = atan2⊳ (𝑚32,𝑚33) and 𝛾1 = atan2⊳

(𝑚21,𝑚11). Furthermore, 𝑚33 = cos𝛼 cos 𝛽 > −1 and 𝑚11 =

cos 𝛽 cos𝛾 > −1, so 𝛼1 and 𝛾1 are continuous. T is always con-

tinuous. so 𝑡1 is continuous, and so 𝑓1 is continuous.

Case 2:𝑀 ∈ 𝑅𝑥𝑦𝑧 ((− 4𝜋
3
,− 2𝜋

3
) ∪ ( 2𝜋

3
, 4𝜋
3
),R,R). T𝛼⊳ (𝛼1 (𝑀)) = 0,

so 𝑓1 (𝑀) = (0, 0, 0) is constant and thus continuous.

Case 3: 𝑀 ∈ 𝑅𝑥𝑦𝑧 (R, (− 2𝜋
3
,−𝜋

3
) ∪ ( 𝜋

3
, 2𝜋
3
),R). T𝛽 (𝛽1 (𝑀)) = 0,

so 𝑓1 (𝑀) = (0, 0, 0) is constant and thus continuous.

Case 4:𝑀 ∈ 𝑅𝑥𝑦𝑧 (R,R, (− 7𝜋
6
,− 5𝜋

6
) ∪ ( 5𝜋

6
, 7𝜋
6
)). T𝛾⊳ (𝛾1 (𝑀)) = 0,

so 𝑓1 (𝑀) = (0, 0, 0) is constant and thus continuous.

It is obvious that if the range of 𝛼 , 𝛽 and 𝛾 all fall outside the

ranges specified in cases 2, 3 and 4 respectively, then they must

satisfy case 1. So any point in SO(3) is covered by at least one

case, so 𝑓1 is continuous on all of SO(3). Additionally, when 𝛼 ∈
[−𝜋

2
, 𝜋
2
], 𝛽 ∈ [−𝜋

4
, 𝜋
4
] and 𝛾 ∈ [− 3𝜋

4
, 3𝜋
4
] , 𝛼1 (𝑀) = 𝛼 , 𝛽1 (𝑀) = 𝛽 ,

𝛾1 (𝑀) = 𝛾 and T𝛼⊳ (𝛼1 (𝑀)) = T𝛽 (𝛽1 (𝑀)) = T𝛾⊳ (𝛾1 (𝑀)) = 1, so

𝑓1 (𝑀) = (𝛼, 𝛽,𝛾).
Similarly, we can prove that 𝑓2, 𝑓3 and 𝑓4 are continuous, and

each gives the correct Euler angles if the input is in their respective

range specified in table 8. Several things in the proof above need to

be changed for each function accordingly:

For 𝑓2 and 𝑓4, the range of 𝛼 in case 1 is (0, 2𝜋) and the range of

𝛼 in case 4 is (−𝜋
3
, 𝜋
3
) ∪ ( 5𝜋

3
, 7𝜋
3
) .

For 𝑓3 and 𝑓4, use 𝑅𝑥𝑧𝑦 instead of 𝑅𝑥𝑦𝑧 . The range of 𝛾 in case 1

is (0, 2𝜋) and the range of 𝛾 in case 4 is (−𝜋
6
, 𝜋
6
) ∪ ( 11𝜋

6
, 13𝜋

6
) .

Now we need to prove that any rotation in SO(3) falls within the

correct range of at least one of 𝑓1, 𝑓2, 𝑓3 and 𝑓4. For𝑀 ∈ SO(3), let
𝑚∗ = max{𝑚11,−𝑚11,𝑚21,−𝑚21,𝑚31,−𝑚31}.

Case 1:𝑚∗ ∈ {−𝑚21,𝑚11,𝑚21}. One of the 𝑥-𝑦-𝑧 type functions
(𝑓1 and 𝑓2) will be correct. 2𝑚

2

31
≤ max{𝑚2

21
,𝑚2

11
} +𝑚2

31
≤ 𝑚2

11
+

𝑚2

21
+𝑚2

31
= 1 , so −

√
2

2
≤ 𝑚31 ≤

√
2

2
, so −𝜋

4
≤ 𝛽1 (𝑀) ≤ 𝜋

4
. at

least one each of the following 𝛾 cases and 𝛼 cases will be satisfied:

Case 1-𝛾-1:𝑚∗ = −𝑚21.𝑚21 ≤𝑚11 ≤ −𝑚21, − 3𝜋
4
≤𝛾1 (𝑀) ≤ −𝜋

4
.

Case 1-𝛾-2:𝑚∗ =𝑚11. −𝑚11 ≤𝑚21 ≤𝑚11, −𝜋
4
≤𝛾1 (𝑀) ≤ 𝜋

4
.

Case 1-𝛾-3:𝑚∗ =𝑚21. −𝑚21 ≤𝑚11 ≤𝑚21,
𝜋
4
≤𝛾1 (𝑀) ≤ 3𝜋

4
.

Case 1-𝛼-1:𝑚33 ≥ 0. −𝜋
2
≤ 𝛼1 (𝑀) ≤ 𝜋

2
. 𝑅𝑥𝑦𝑧 (𝑓1 (𝑀)) = 𝑀 .

Case 1-𝛼-2:𝑚33 ≤ 0.
𝜋
2
≤ 𝛼2 (𝑀) ≤ 3𝜋

2
. 𝑅𝑥𝑦𝑧 (𝑓2 (𝑀)) = 𝑀 .

Case 2:𝑚∗ ∈ {−𝑚31,−𝑚11,𝑚31} One of the 𝑥-𝑧-𝑦 type functions

(𝑓3 and 𝑓4) will be correct. 2𝑚
2

21
≤ max{𝑚2

31
,𝑚2

11
} +𝑚2

21
≤ 𝑚2

11
+

𝑚2

21
+𝑚2

31
= 1 , so −

√
2

2
≤ 𝑚21 ≤

√
2

2
, so −𝜋

4
≤ 𝛽3 (𝑀) ≤ 𝜋

4
. at

least one each of the following 𝛾 cases and 𝛼 cases will be satisfied:

Case 2-𝛾-1:𝑚∗ = −𝑚31.𝑚31 ≤𝑚11 ≤ −𝑚31,
𝜋
4
≤𝛾3 (𝑀) ≤ 3𝜋

4
.

Case 2-𝛾-2:𝑚∗ = −𝑚11.𝑚11 ≤𝑚31 ≤ −𝑚11,
3𝜋
4
≤𝛾3 (𝑀) ≤ 5𝜋

4
.

Case 2-𝛾-3:𝑚∗ =𝑚31. −𝑚31 ≤𝑚11 ≤𝑚31,
5𝜋
4
≤𝛾3 (𝑀) ≤ 7𝜋

4
.

Case 2-𝛼-1:𝑚22 ≥ 0. −𝜋
2
≤ 𝛼3 (𝑀) ≤ 𝜋

2
. 𝑅𝑥𝑧𝑦 (𝑓3 (𝑀)) = 𝑀 .

Case 2-𝛼-2:𝑚22 ≤ 0.
𝜋
2
≤ 𝛼4 (𝑀) ≤ 3𝜋

2
. 𝑅𝑥𝑧𝑦 (𝑓4 (𝑀)) = 𝑀 .

In conclusion, 𝑓1, 𝑓2, 𝑓3 and 𝑓4 are continuous functions from

SO(3) to R3 and for any rotation 𝑀 ∈ SO(3), at least one of 𝑅𝑥𝑦𝑧
(𝑓1 (𝑀)), 𝑅𝑥𝑦𝑧 (𝑓2 (𝑀)), 𝑅𝑥𝑧𝑦 (𝑓3 (𝑀)) and 𝑅𝑥𝑧𝑦 (𝑓4 (𝑀)) is equal to
𝑀 . □

D.3 Symmetric Cases
Corollary 4. Let 𝐺 be a finite, non-trivial subgroup SO(3). Then

there does not exist continuous map 𝑓 : SO(3)/𝐺 → SO(3) such that
𝜑𝐺 ◦ 𝑓 is the identity map.

Here we discuss what corollary 4 did not address: to prove a

tight lower bound for the maximum error that must occur for a

continuous function that computes the rotation of a symmetrical

3D object.

We start from introducing the possible rotation symmetrics of a

3D shape. The finite subgroups of SO(3) are, in Schoenflies nota-

tions:

• Cyclic symmetry 𝐶𝑛 , the rotation symmetry of regular 𝑛-

pyramids.

• Dihedral symmetry 𝐷𝑛 , the rotation symmetry of regular

𝑛-prisms.

• Polyhedral symmetry, 𝑇 , 𝑂 and 𝐼 , the rotation symmetry of

regular tetrahedra, octahedra and icosahedra.

We will work in quaternion representations and make extensive use

of the preimage of each group under 𝑅q, i.e. the set of all quaternions

that represent some rotation in that group. They are finite subgroups

of Sp(1), with twice the size:
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Table 9. The finite rotation symmetry groups

𝐺 |𝐺 | Elements of 𝐺

𝐶𝑛 𝑛 (cos 𝑘𝜋
𝑛 , 0, 0, sin 𝑘𝜋

𝑛 ), 0 ≤ 𝑘 < 2𝑛

𝐷𝑛 2𝑛
(cos 𝑘𝜋

𝑛 , 0, 0, sin 𝑘𝜋
𝑛 ), 0 ≤ 𝑘 < 2𝑛

(0, cos 𝑘𝜋
𝑛 , sin 𝑘𝜋

𝑛 , 0), 0 ≤ 𝑘 < 2𝑛

𝑇 12

Perm(±1, 0, 0, 0)

(± 1

2
,± 1

2
,± 1

2
,± 1

2
)

𝑂 24

Perm(±1, 0, 0, 0)

(± 1

2
,± 1

2
,± 1

2
,± 1

2
)

Perm(±
√
2

2
,±

√
2

2
, 0, 0)

𝐼 60

Perm(±1, 0, 0, 0)

(± 1

2
,± 1

2
,± 1

2
,± 1

2
)

EvenPerm(0,±
√
5+1
4

,± 1

2
,±

√
5−1
4

)

• The preimage of 𝐶𝑛 is the cyclic group of twice the order,

𝐶2𝑛 .

• The preimage of 𝐷𝑛 is the dicyclic group Dic𝑛 .

• The preimages of𝑇 ,𝑂 and 𝐼 are the binary polyhedral groups

2𝑇 , 2𝑂 and 2𝐼 .

Generically we refer to the preimage of 𝐺 , 𝑅−1
q

[𝐺], as 𝐺 . We have

SO(3)/𝐺 � Sp(1)/𝐺 (Informally, we “multiplied” both the “numera-

tor” and the “denominator” by 2). The size of𝐺 and all the quaternion

elements of𝐺 are listed in table 9. Perm() refers to all permutations

of the sequence and EvenPerm() refers to all even permutations.

Since we will use quaternions extensively, we first write the defi-

nition of rotation distance under symmetry in terms of quaternions:

𝑑𝐺 (𝑅q (p), 𝑅q (q)) (29)

=min

𝑆 ∈𝐺
𝑑3 (𝑅q (p), 𝑅q (q)𝑆)

=min

s∈𝐺
2𝑑q (p, qs)

Our proof for the lower bound of maximum error is valid for all

rotation groups containing any rotation of angle 𝜋 , which includes

every rotation group except 𝐶𝑛 with an odd 𝑛. We believe however

that for 𝐶𝑛 with an odd 𝑛 the conclusion is the same. Assume that

𝐺 is one of the applicable groups. Let 𝑓 be any continuous func-

tion from SO(3)/𝐺 to SO(3). Now pick one of the two preimages

of 𝑓 (𝜑𝐺 (𝐼3×3)) under 𝑅q as s. Define 𝑓 : Sp(1) → Sp(1) by the

following method:

For any r ∈ Sp(1), let ℎ be a path from 1 to r, that is, ℎ is a

continuous function from [0, 1] to Sp(1) such that ℎ(0) = 1 and

ℎ(1) = r. Then 𝑓 ◦ 𝜑𝐺 ◦ 𝑅q ◦ ℎ is a path in SO(3) starting from

𝑓 (𝜑𝐺 (𝐼3×3)) = 𝑅q (s). By the lifting property of covering spaces,

𝑓 ◦ 𝜑𝐺 ◦ 𝑅q ◦ ℎ lifts to a unique path in Sp(1) starting from s. Let 𝑔
be that path. We prove that the value of 𝑔(1) is independent of the
choice of ℎ:

for any two pathsℎ1 andℎ2 from 1 to r, suppose that 𝑓 ◦𝜑𝐺 ◦𝑅q◦ℎ1
lifts to 𝑔1 from s and 𝑓 ◦ 𝜑𝐺 ◦ 𝑅q ◦ ℎ2 lifts to 𝑔2 from s. Since Sp(1)
is simply connected, there exists a homotopy of paths from ℎ1 to ℎ2.

That is, there exists a continuous function𝐻 : [0, 1]× [0, 1] → Sp(1)
such that 𝐻 (𝑡, 0) = ℎ1 (𝑡) and 𝐻 (𝑡, 1) = ℎ2 (𝑡) for all 0 ≤ 𝑡 ≤ 1 and

𝐻 (0, 𝑢) = 1 and 𝐻 (1, 𝑢) = r for all 0 ≤ 𝑢 ≤ 1. Now let 𝑁 =

𝑓 ◦ 𝜑𝐺 ◦ 𝑅q ◦ 𝐻 , then 𝑁 : [0, 1] × [0, 1] → SO(3) is a homotopy of

paths in SO(3),𝑁 (·, 0) = 𝑓 ◦𝜑𝐺 ◦𝑅q◦ℎ1 and𝑁 (·, 1) = 𝑓 ◦𝜑𝐺 ◦𝑅q◦ℎ2.
𝑅q ◦ 𝑔1 = 𝑁 (·, 0). By the lifting property of covering spaces,

𝑁 lifts to a unique homotopy 𝑁 in Sp(1) such that 𝑁 (·, 0) = 𝑔1.

Since 𝑅q (𝑁 (0, 𝑢)) = 𝑅q (s), for any 𝑢 we must have 𝑁 (0, 𝑢) = s or
𝑁 (0, 𝑢) = −s. 𝑁 (0, 𝑢) is also continuous in 𝑢, so it must be constant.

So we must have 𝑁 (0, 1) = 𝑁 (0, 0) = s. Likewise we must have

𝑁 (1, 1) = 𝑁 (1, 0).
𝑁 (·, 1) is a lift of 𝑁 (·, 1) starting from 𝑁 (0, 1) = s. Since 𝑔2 is

the unique such lift, we have 𝑁 (·, 1) = 𝑔2. So, 𝑔2 (1) = 𝑁 (1, 1) =

𝑁 (1, 0) = 𝑔1 (1).
Now we have proven that the value of 𝑔(1) is independent of

the choice of ℎ. So we can define 𝑓 (r) = 𝑔(1). 𝑓 (r) is a preimage

of 𝑓 (𝜑𝐺 (𝑅q (r))). By the construction of 𝑓 , we can see that if ℎ is a

path from p to q, then the lift of 𝑓 ◦ 𝜑𝐺 ◦ 𝑅q ◦ ℎ starting from 𝑓 (p)
will end at 𝑓 (q).

Let 𝐺 = 𝑅−1
q

[𝐺] be the binary polyhedral group corresponding

to 𝐺 . Since 𝐺 contains a rotation of angle 𝜋 , 𝐺 must contain a pure

quaternion. Let q0 = 𝑥 i + 𝑦j + 𝑧k ∈ 𝐺 be such a quaternion. Define

q(𝑡) = cos
𝜋
2
𝑡 + sin

𝜋
2
𝑡 · q0. Now for any p ∈ 𝑆3, let 𝑟⊳ (𝑡) = pq(𝑡)

and 𝑟⊲ (𝑡) = pq0q(𝑡), then 𝑟⊳ (𝑡) is a path from p to pq0, 𝑟⊲ (𝑡) is a
path from pq0 to pq2

0
= −p and 𝑟⊲ (𝑡) = 𝑟⊳ (𝑡)q0

Note that 𝜑𝐺 (𝑅q (p)) = 𝜑𝐺 (𝑅q (pq)) if q ∈ 𝐺 . So, 𝜑𝐺 ◦𝑅q ◦ 𝑟⊳ and
𝜑𝐺 ◦ 𝑅q ◦ 𝑟⊲ are the same path in SO(3)/𝐺 and that path is a loop.

Then, 𝑣 = 𝑓 ◦ 𝜑𝐺 ◦ 𝑅q ◦ 𝑟⊳ = 𝑓 ◦ 𝜑𝐺 ◦ 𝑅q ◦ 𝑟⊲ is a loop in SO(3).
Consider the lift of 𝑣 in Sp(1). Let u = 𝑓 (p), then the lift of 𝑣 in

Sp(1) must start and end at either u or −u. If the lifted path starting

from u also ends at u, then the lifted path starting from −umust end

at −u, for otherwise the reverse of 𝑣 lifts to two paths path from u to

two different destinations u and −u which is impossible. Likewise,

if the lifted path starting from u ends at −u, then the lifted path

starting from −u must end at u.
Now join 𝑟⊳ and 𝑟⊲ as a long path 𝑟 : 𝑟 (𝑡) = q(2𝑡). 𝑟 is a path from

p to −p. The first half of 𝑟 coincides with 𝑟⊳ and the second half of

𝑟 coincides with 𝑟⊲. Consider the lift of 𝑓 ◦ 𝜑𝐺 ◦ 𝑅q ◦ 𝑟 . It can be

obtained by joining two lifts of 𝑣 , lets call �̂�⊳ and �̂�⊲. If �̂�⊳ goes from

u to −u, then �̂�⊲ goes from −u to u. If �̂�⊳ loops from u back to u,
then �̂�⊳ does the same. In any case, the whole lifted path is a loop

from u back to u.
The start of this path is u = 𝑓 (p). By the construction of 𝑓 , the

end point equals 𝑓 (−p). So for any p ∈ Sp(1), 𝑓 (p) = 𝑓 (−p).
Now consider the error on input generated by 𝑅q (p). Recall that

𝑓 (p) is a preimage of 𝑓 (𝜑𝐺 (𝑅q (p))). We have

𝑑𝐺 (𝑅q (p), 𝑓 (𝜑𝐺 (𝑅q (p)))) (30)

=min

q∈𝐺
2𝑑q (p, 𝑓 (p)q)
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Let us now select 3 quaternions q1, q2 and q3 from𝐺 . The method

of selection will be considered later. Let 𝑙𝑖 (p) = p · 𝑓 (p)−p · (𝑓 (p)q𝑖 ),
then

𝑙𝑖 (−p) (31)

=(−p) · 𝑓 (−p) − (−p) (·𝑓 (−p)q𝑖 )

= − p · 𝑓 (p) + p · (𝑓 (p)q𝑖 )
= − 𝑙𝑖 (p)

Let 𝐿(p) = (𝑙1 (p), 𝑙2 (p), 𝑙3 (p)). By the Borsuk–Ulam theorem,

there exists p0 such that 𝐿(p0) = 0. Then we have

p0 · 𝑓 (p0) − p0 · (𝑓 (p0)q𝑖 ) = 0, 𝑖 = 1, 2, 3 (32)

a · (bc) = Re(a(bc)) = Re((ab)c) = (ba) · c for any quaternions

a, b and c, so equivalently

(𝑓 (p0)p0) · (q𝑖 − 1) = 0, 𝑖 = 1, 2, 3 (33)

In non-degenerate cases, this will give us three independent lin-

ear equations in the four components of 𝑓 (p0)p0. Together with
| |𝑓 (p0)p0 | | = 1, 𝑓 (p0)p0 can be uniquely determined up to negation.

From this, we can compute

𝑑𝐺 (𝑅q (p0), 𝑓 (𝜑𝐺 (𝑅q (p0)))) (34)

=min

q∈𝐺
2𝑑q (p0, 𝑓 (p0)q)

=min

q∈𝐺
2 cos

−1 (p0 · (𝑓 (p0)q))

=min

q∈𝐺
2 cos

−1 ((𝑓 (p0)p0) · q)

which gives us a lower bound formaxp 𝑑𝐺 (𝑅q (p), 𝑓 (𝜑𝐺 (𝑅q (p)))),
i.e. the lower bound for the maximum error that must occur. It turns

out that the highest lower bound so obtained is exactly the largest

possible value of 𝑑𝐺 and so must be tight.

We list one possible optimal choice of all choices of q𝑖 and the

resulting error bound in table 10.𝐶𝑛 is a degenerate case where one

of the q𝑖 is redundant, but all solutions of 𝑓 (p0)p0 give the same

bound.

For the construction of four open contractible subsets that cover

SO(3)/𝐺 , we demonstrate a generalmethodwith a concrete example.

Let’s take 𝐺 = 𝐷2. 𝐷2 consists of four elements: the identity, and

the rotation of 𝜋 around each of the 𝑥 , 𝑦 and 𝑧 axes. As an abstract

group it is the Klein four-group.

We visualize the structure of Sp(1)/Dic2 � SO(3)/𝐷2 first.Dic2 =

{±1,±i,±j,±k}. It is also called the “quaternion group” 𝑄8, not to

be confused with the “multiplicative group of unit quaternions”.

Remember that Sp(1)/Dic2 is the set of left cosets of Dic2 in Sp(1).
We can select one point from each coset of Dic2 in Sp(1) as a rep-
resentative. For example, in each coset, we select the element that

is the closest to 1. If there is a tie, take all of the closest points.

Points in this representative set correspond one-to-one with points

in Sp(1)/Dic2, except on the boundary: the boundary are exactly

the points causing a tie, so multiple points on the boundary actu-

ally represent the same coset. To go from the representative set to

Sp(1)/Dic2, we just need to identify these equivalent points.

Table 10. Error bound for each symmetry.

𝐺 Choice of q𝑖 Error bound

𝐶𝑛
(−1, 0, 0, 0)

(cos 𝜋
𝑛 , 0, 0, sin

𝜋
𝑛 )

𝜋

𝐷𝑛

(cos 𝜋
𝑛 , 0, 0, sin

𝜋
𝑛 )

(0, 1, 0, 0)
(0, cos 𝜋

𝑛 , sin
𝜋
𝑛 , 0)

arccos(− sin
2 𝜋
2𝑛 )

𝑇

( 1
2
, 1
2
, 1
2
, 1
2
)

( 1
2
, 1
2
, 1
2
,− 1

2
)

( 1
2
, 1
2
,− 1

2
, 1
2
)

𝜋
2

𝑂

(
√
2

2
,

√
2

2
, 0, 0)

(
√
2

2
, 0,

√
2

2
, 0)

( 1
2
, 1
2
, 1
2
, 1
2
)

arccos
2

√
2−1
4

𝐼

(
√
5+1
4

, 1
2
, 0,

√
5−1
4

)

(
√
5+1
4

,

√
5−1
4

, 1
2
, 0)

(
√
5+1
4

, 0,

√
5−1
4

, 1
2
)

arccos
3

√
5−1
8

(a) (b)

Fig. 13. Structure of Sp(1)/Dic2. (a): each set of points marked with the
same color should be identified. (b): vertices or edges or faces should be
glued together, with matching directions, if they are marked with the same
color.

Indeed, cutting a space apart and specifying how the boundary

points should be glued back is a common way for visualizing a space.

For example, constructing a torus by gluing together opposite edges

of a square is an introductory example in topology.

The representative set is the set of points in Sp(1) that are closer
to 1 than any of ±i, ±j and ±k. Its shape is a bulging cube with

vertices at
1

2
± 1

2
i ± 1

2
j ± 1

2
k. Although geometrically a spherical

polyhedron in 4D space, topologically this makes no difference so

for simplicity we “project” it from (𝑤, 𝑥,𝑦, 𝑧) to (𝑥,𝑦, 𝑧) coordinates
and draw it as a cube with flat faces, as shown in figure 13.
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In figure 13 (a), we marked three set of points. 𝐴’s are on four of

the vertices:

𝐴1 =
1

2

(1 + i + j + k) (35)

𝐴2 =
1

2

(1 + i − j − k)

𝐴3 =
1

2

(1 − i + j − k)

𝐴4 =
1

2

(1 − i − j + k)

They represent the same element of Sp(1)/Dic2. For example,

−i ∈ Dic2 and 𝐴1 (−i) = 𝐴4, so 𝐴1 and 𝐴4 are in the same coset of

Dic2 in Sp(1) and should be identified.

Similarly, the 𝐵’s on the center of three of the edges are equivalent:

𝐵1 =

√
3

3

(1 + i − k) (36)

𝐵2 =

√
3

3

(1 − i + j)

𝐵3 =

√
3

3

(1 − j + k)

As do the 𝐶’s on the center of two of the faces:

𝐶1 =

√
2

2

(1 + i) (37)

𝐶2 =

√
2

2

(1 − i)

These equivalence relations are summarized in figure 13 (b). To

get Sp(1)/Dic2, we glue together two sets of four vertices each,

four sets of three edges each and three sets of two faces each. The

opposite faces are glued together with a 90 degree twist.

Keeping boundary equivalences in mind, we can then find four

contractible subsets that cover this cube. The four subsets are shown

in figure 14. Each row is one subset. The first subset is formed by

starting from the center of the cube and growing a region until it

is close to touching the surface. The second subset is formed by

starting from the center of each face and growing several regions

simultaneously until they are close to touching each other. The

third and fourth subsets are formed similarly to the second one but

starting from centers of edges and from vertices instead.

Now we glue these regions together according to the boundary

equivalences. The first subset is just a cube. For the second subset,

each region is a pyramid, and pairs of them need to be glued together

along their base, so we get three 4-bipyramids. Similarly, the third

subset consists of four 3-bipyramids, and the fourth subset consists

of two tetrahedra. Each of these polyhedra is homeomorphic to

a ball and thus contractible, so any disjoint union of them is also

contractible.

To see how these subsets cover the whole Sp(1)/Dic2, consider
any point. If it is not close to a face, then it is covered by the first

subset. Otherwise, if it is not close to an edge, then it is covered by

the second subset. Otherwise, if it is not close to a vertex, then it is

covered by the third subset. Otherwise it is covered by the fourth

subset.

In general, any SO(3)/𝐺 can be similarly constructed by gluing

together surface points of a suitable polyhedron, and the strategy

Fig. 14. Four contractible subsets that cover Sp(1)/Dic2. Each row is one
subset, shown as the disjoint union of (topological) balls.

of forming four subsets by growing from the center, face-centers,

edge-centers and vertices respectively can be applied.

Note that while elaborate constructions are given to demonstrate

that an ensemble is able to solve rotation estimation problems, with

or without symmetry, the knowledge of these constructions are

not required to train such an ensemble: the classifier needs not be

trained to classify the points in SO(3) or SO(3)/𝐺 according to some

known subsets. Our training method lets the network discover these

subsets automatically without explicit supervision, and that is why

it is called a “self-selecting” ensemble.

ACM Trans. Graph., Vol. 40, No. 4, Article 167. Publication date: August 2021.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Rotation Representations for Machine Learning and Their Continuity
	2.2 Rotation Estimation by Classification

	3 Motivating Example: 2D Rotation Estimation
	4 Theoretical Results
	4.1 3D Rotation Estimation
	4.2 The Problem of Symmetry
	4.3 The Self-selecting Ensemble

	5 Experiments
	5.1 Network and Training
	5.2 2D Toy Problem
	5.3 3D Toy Problem
	5.4 Object Rotation Estimation From Images
	5.5 Object Rotation Estimation From Point Clouds

	6 Discussions
	7 Conclusion
	Acknowledgments
	References
	A Mathematics Review
	A.1 Quaternion representation of 3D rotations
	A.2 3D Rotation Distance
	A.3 Embedding of SO(3) in R6 and R5

	B Network Architecture
	C Error Distribution Curves
	D Additional Theoretical Results
	D.1 Quaternion Ensembles
	D.2 Euler Angle Ensembles
	D.3 Symmetric Cases


